Electronic Supplementary Information

Halo-methylphenyl substituted neutral tripodal receptors for

cation-asisted encapsulation of anionic guests of varied

dimensionality

Utsab Manna and Gopal Das*

Department of Chemistry, Indian Institute of Technology Guwahati,

Assam-781039, India

E-mail: <u>gdas@iitg.ernet.in</u>

Scheme S1: Synthetic pathway and reaction mechanism for preparation of two isomeric halo-methylphenyl trisurea receptors L_1 and L_2 .

Characterization of free receptors L₁ and L₂:

Figure S1: ESI-mass spectrum of tris([(3-chloro-4-methylphenyl)amino]ethyl)-urea receptor L1.

Figure S3: Integrated ¹H-NMR spectrum (full as well as expanded) and interpretation of all hydrogen atoms of free tripodal tris-urea receptor L_1 in DMSO-d₆ at 25°C.

Figure S4: FT-IR spectrum of Free ligand L_1 recorded in KBr pellet.

Figure S5: Integrated ¹H-NMR spectrum (full as well as expanded) and interpretation of all hydrogen atoms of free tripodal tris-urea receptor L_2 in DMSO-d₆ at 25°C.

Figure S6: FT-IR spectrum of Free ligand L₁ recorded in KBr pellet.

Characterization of anion complexes of receptors:

Figure S7: FT-IR spectrum of chloride encapsulated complex 1a of L_1 recorded in KBr pellet.

Figure S8: ¹H NMR full and expanded spectrum of chloride encapsulated complex 1a as recorded in DMSO- d_6 at 298 K.

Figure S9: FT-IR spectrum of bromide encapsulated complex 1b of L_1 recorded in KBr pellet.

Figure S10: ¹H NMR full and expanded spectrum of bromide encapsulated complex 1b as recorded in DMSO d_6 at 298 K.

Figure S11: FT-IR spectrum of divalent carbonate encapsulated complex 1c of L_1 recorded in KBr pellet.

Figure S12: ¹H NMR full and expanded spectrum of divalent carbonate encapsulated dimeric cage complex 1c as recorded in DMSO- d_6 at 298 K.

Figure S13: FT-IR spectrum of divalent sulphate encapsulated complex 1d of L_1 recorded in KBr pellet.

Figure S14: ¹H NMR full and expanded spectrum of divalent sulphate encapsulated dimeric cage complex 1d as recorded in DMSO- d_6 at 298 K.

Figure S15: FT-IR spectrum of fluoride encapsulated complex 2a of L_2 recorded in KBr pellet.

Figure S16: ¹H NMR full and expanded spectrum of fluoride encapsulated complex 2a as recorded in DMSO- d_6 at 298 K.

Figure S17: FT-IR spectrum of divalent sulphate encapsulated complex 2b of L_2 recorded in KBr pellet.

Figure S18: ¹H NMR full and expanded spectrum of divalent sulphate encapsulated dimeric cage complex **2b** as recorded in DMSO- d_6 at 298 K.

Figure S19: FT-IR spectrum of divalent hexafluorosilicate encapsulated complex 2c of L_2 recorded in KBr pellet.

Figure S20: ¹H NMR full and expanded spectrum of divalent silicon hexafluoride encapsulated dimeric cage complex **2c** as recorded in DMSO- d_6 at 298 K.

Solution state anion binding studies:

Figure S21: Expanded partial ¹H NMR stack plot of L₁ upon titration with standard (*n*-TBA)₂SO₄ in DMSO-d₆.

Figure S22: Change in chemical shift of -NH resonances of L₁ (10 mM) with increasing concentration of standard SO₄²⁻ solution (50 mM) in DMSO-d₆ at 298 K and the corresponding Job's plot.

Figure S23: Expanded partial ¹H NMR stack plot of L₂ upon titration with standard (*n*-TBA)₂SO₄ in DMSO-d₆.

Figure S24: Change in chemical shift of -NH resonances of L_2 (10 mM) with increasing concentration of standard SO₄²⁻ solution (50 mM) in DMSO-d₆ at 298 K and the corresponding Job's plot.

Figure S25: Expanded partial ¹H NMR stack plot of L_2 upon titration with standard *n*-TBAF in DMSO-d₆ displaying instant downfield shift of urea –NH protons upon 1.0 eqv. fluoride salt addition.

Figure S26. Expanded partial ¹H NMR comparative stacked spectra of receptors L_1 (left) and L_2 (right) with each anion as observed from the solid state, displaying the noticeable downfield shifts of urea -NH_a and -NH_b resonances of particular receptor upon anion complexation.

Figure S27: Change in chemical shift of $-NH_a$ resonances of L_1 (10 mM) with increasing concentration of standard SO₄²⁻ solution (50 mM) in DMSO-d₆ (left) and the output files from WINEQNMR programme of L_1 -SO₄²⁻ titrations (right).

Figure S28: Change in chemical shift of $-NH_a$ resonances of L_2 (10 mM) with increasing concentration of standard SO₄²⁻ solution (50 mM) in DMSO-d₆ (left) and the output files from WINEQNMR programme of L_2 -SO₄²⁻ titrations (right).

Complex	D-H…A	<i>d</i> (D…H)/Å	d(H…A)/Å	<i>d</i> (D…A)/Å	<d-h…a th="" °<=""><th>Symmetry codes</th></d-h…a>	Symmetry codes
L ₁	N3-H3N…O2	0.86	1.99	2.847(10)	178	-X,-Y,-Z
	N4-H4N…O3	0.86	2.07	2.877(10)	157	x,y,z
	N5-H5N…O3	0.86	2.08	2.881(9)	155	x,y,z
	N6-H6N…O1	0.86	2.16	2.956(10)	154	1-x,-y,1-z
	N7-H7N…O1	0.86	2.13	2.921(9)	152	1-x,-y,1-z
L ₂	N2-H2N…O3	0.86	2.13	2.927(9)	153	x,y,z
	N3-H3N…O3	0.86	2.12	2.907(9)	152	x,y,z
	N4-H4N…O4	0.86	2.19	2.971(9)	151	1+x,1/2-y,1/2+z
	N5-H5N…O4	0.86	2.11	2.899(8)	152	1+x,1/2-y,1/2+z
	N6-H6N…O6	0.86	2.01	2.869(9)	177	x,1/2-y,1/2+z
	N9-H9N…O5	0.86	2.12	2.919(8)	154	x,y,z
	N10-H10N…O5	0.86	2.20	2.991(8)	153	x,y,z
	N11-H11N…O2	0.86	2.01	2.870(9)	175	x,1/2-y,-1/2+z
	N13-H13N…O1	0.86	2.31	3.062(9)	147	x,1/2-y,-1/2+z
	N14-H14N…O1	0.86	2.01	2.827(9)	158	x,1/2-y,-1/2+z
1a	N2-H2N…Cl4	0.86	2.66	3.449(12)	154	-1/2+x,1/2-y,z
	N3-H3N…Cl4	0.86	2.49	3.301(11)	158	-1/2+x,1/2-y,z
	N4-H4N…Cl4	0.86	2.65	3.443(12)	153	-1/2+x,1/2-y,z
	N5-H5N…Cl4	0.86	2.43	3.274(8)	166	-1/2+x,1/2-y,z
	N6-H6N…Cl4	0.86	2.74	3.527(9)	153	-1/2+x,1/2-y,z
	N7-H7N…Cl4	0.86	2.39	3.220(13)	162	-1/2+x,1/2-y,z
1b	N2-H2N…Br1	0.86	2.77	3.5595	153	-1/2+x,1/2-y,z
	N3-H3N…Br1	0.86	2.50	3.3416	166	-1/2+x,1/2-y,z
	N4-H4N…Br1	0.86	2.85	3.6309	152	-1/2+x,1/2-y,z
	N5-H5N…Br1	0.86	2.52	3.3233	156	-1/2+x,1/2-y,z
	N6-H6N…Br1	0.86	2.77	3.5670	154	-1/2+x,1/2-y,z
	N7-H7N…Br1	0.86	2.61	3.4295	159	-1/2+x,1/2-y,z
1c	N2-H2N…O8	0.86	2.19	2.975(10)	151	x,y,z
	N3-H3N… O8	0.86	2.13	2.920(10)	153	x,y,z
	N4-H4N…O7	0.86	2.17	2.884(12)	141	1/2-x,y,3/2-z
	N5-H5N…O7	0.86	2.41	3.075(13)	134	1/2-x,y,3/2-z
	N5-H5N…O8	0.86	2.36	3.201(10)	166	1/2-x,y,3/2-z
	N6-H6N…O8	0.86	2.31	3.152(10)	167	x,y,z
	N7-H7N…O7	0.86	1.89	2.748(13)	173	x,y,z
	N7-H7N…O7	0.86	2.35	3.094(14)	144	1/2-x,y,3/2-z
	N9-H9N…O10	0.86	2.50	3.239(8)	144	x,y,z
	N10-H10N…O10	0.86	2.08	2.868(12)	153	x,y,z
	N11-H11N…O9	0.86	2.44	3.160(10)	141	x,y,z
	N12-H12N…O9	0.86	2.14	2.984(12)	167	1/2-x,y,1/2-z
	N13-H13N…O9	0.86	2.52	3.253(10)	144	x,y,z

Table S1. Hydrogen bonding distances (Å) and Bond angles (°) in the free ligands and their anion complexes:

	N14-H14N…O9	0.86	1.93	2.792(10)	175	x,y,z
1d	N2-H2N…O7	0.86	2.12	2.937(5)	160	X.V.Z
	N3-H3N…O9	0.86	2.19	3.018(5)	161	x,y,z
	N4-H4N…O7	0.86	2.12	2.904(6)	152	X,V,Z
	N5-H5N…O8	0.86	2.12	2.941(5)	158	X,V,Z
	N6-H6N…O7	0.86	2.08	2.908(5)	160	x,y,z
	N7-H7N…O10	0.86	2.13	2.951(5)	159	X,V,Z
	N9-H9N…O9	0.86	2.24	3.025(5)	152	x,y,z
	N10-H10N…O9	0.86	2.08	2.915(6)	164	x,y,z
	N11-H11N…O8	0.86	2.24	3.028(5)	152	x,y,z
	N12-H12N…O8	0.86	2.10	2.932(5)	161	X,V,Z
	N13-H13N…O10	0.86	2.30	3.077(5)	150	x,y,z
	N14-H14N…O10	0.86	1.10	2.931(5)	163	x,y,z
2a	N2-H2N…F1	0.86	2.03	2.826(6)	154	x,y,z
	N3-H3N… F1	0.86	2.01	2.816(6)	156	x,y,z
	N4-H4N… F1	0.86	2.29	3.033(5)	144	x,y,z
	N5-H5N… F1	0.86	1.88	2.721(6)	164	x,y,z
	N6-H6N… F1	0.86	2.24	2.982(5)	144	x,y,z
	N7-H7N… F1	0.86	1.90	2.720(6)	160	х,у,z
2b	N2-H2N…O7	0.86	2 36	3 134(14)	150	X V 7
	N3-H3N…07	0.86	2.06	2 908(17)	167	x,y,2 x v 7
	N4-H4N…O9	0.86	2 33	3 109(16)	151	x,y,2 x v 7
	N5-H5N···09	0.86	2.00	2 947(16)	165	x,y,2 x v 7
	N6-H6N···O10	0.86	2.11	3 006(14)	154	X,y,2 X V 7
	N7-H7N…O10	0.86	2 30	3 054(14)	146	x,y,2 x v 7
	N9-H9N…O8	0.86	2 14	2 897(15)	146	X V 7
	N10-H10N…O7	0.86	2.11	2.945(16)	165	X.V.7
	N11-H11N····O8	0.86	2.14	2.910(13)	148	X,y,)_
	N12-H12N…O9	0.86	2.26	3.077(16)	159	X,y,)_
	N13-H13N····O8	0.86	2.19	2.957(16)	149	X.V.7
	N14-H14N…O10	0.86	2.11	2.943(15)	163	x,y,z
2c	N2-H2N…F1	0.86	1.97	2.800(3)	161	x,y,z
	N3-H3N… F4	0.86	2.46	3.220(2)	148	x,y,z
	N4-H4N… F1	0.86	2.41	3.155(18)	145	x,y,z
	N5-H5N… F3	0.86	2.27	3.100(2)	161	x,y,z
	N6-H6N… F1	0.86	2.16	2.933(19)	150	x,y,z
	N7-H7N… F2	0.86	2.17	3.000(2)	164	1-x,y,1/2-z

Figure S29. The scatter plot of D–H···A angles *vs.* H···A distances of the hydrogen bonds in free receptors (a) L_1 , (b) L_2 and in their neutral anion complexes (c) 1a, (d) 1b, (e) 1c, (f) 1d, (g) 2a, (h) 2b and (i) 2c.