Electronic Supplementary Information

The influence of secondary building linker geometry on photochromism of naphthalenediimide based metal-organic frameworks[†]

Chen Fu, Hai-Yu Wang, Guo-Shuai Zhang, Li Li, Ya-Nan Sun, Jia-Wei Fu, and Hong Zhang*

^aInstitute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China. Fax:+86-0431-85099372;Tel:+86-0431-85099372;Email:hope20130122@163.com,Zhangh@nenu.edu.cn

1. Graphics

Fig. S1 Coordination environment of Cd^{2+} in 1 (a), 2 (b) and 3 (c).

Fig. S2 The view of three-dimensional framework of 1with 1-D channels.

Fig. S3 The C-H··· π interactions between DMF molecules and two kinds ligands in **2** (dashed orange bonds: 3.458 Å, dashed pink bonds: 2.795 Å, dashed green bonds: 2.987Å).

Fig. S4 The lone pair $-\pi$ interactions in **2** (dashed orange bonds: 3.098 Å, dashed pink bonds: 3.146 Å).

Fig. S5 Another N-H···O hydrogen bonds (dashed orange bonds: 1.941 Å), lone pair- π interactions (dashed pink bonds: 3.543 Å) and one kind π - π stacking interaction (dashed green bond: 3.763 Å) in neighbouring IsoNDI ligands in **3**.

Fig. S6 The N-H···O hydrogen bonds and lone pair- π interactions showed in 3.

Fig. S7 The UV-Vis spectrums of 1-3 in the photochromic process. Lables: 1a, 2a and 3a, before irradiation; 1b, 2b and 3b, after irradiated by a 300W Xenon lamp in 10 min; Decolored: after dark treatment.

Fig. S8 PXRD patterns of 1-3. Lables: 1a, 2a and 3a, before irradiation; 1b, 2b and 3b, after irradiation; Decolored: after dark treatment.

Fig. S9 Thermogravimetric analyses of 1 (a), 2 (b) and 3 (c) were carried out in powder states under N_2 atmosphere.

Fig. S10 FT-IR spectra of 1 (a), 2 (b) and 3 (c).

Fig. S11 The UV-Vis spectrum and photographic images of IsoNDI ligand in the photochromic process.

Fig. S12 Photo-controlled luminescence spectrum of IsoNDI ligand.

2. Tables

Table S1. Crystal data and structure refinement parameters for compounds 1-3

Compound	1	2	3
Empirical formula	C ₃₈ H ₂₄ N ₆ O ₁₂ Cd	C ₃₇ H ₂₆ N ₇ O ₁₁ Cd	C ₃₁ H ₁₅ N ₆ O ₁₀ Cd
Formula weight	869.05 856.84 74		743.90
Crystal system	Monoclinic	Triclinic Triclinic	
Space group	C 2c	Pī Pī	
<i>a</i> (Å)	26.906(4) 10.1261(7) 7.		7.8706(10)
$b(\text{\AA})$	7.5367(9)	5367(9) 13.8772(9) 10.2	
<i>c</i> (Å)	17.210(2)	10(2) 14.7762(10) 19	
α (°)	90	88.202(1)	90.351(2) 94.250(2)
β (°)	92.375(4)	72.861(1)	
γ (°)	90	71.667(1)	111.416(2)
V (Å ³)	3486.8(7)	1879.2(2)	1455.04(30)
Ζ	4	3	2
T (K)	296(2) 296(2)		296(2)
ρ_{calc} (g/cm ³)	1.655 1.737 1		1.698
F (000)	2940 948		1190
Absorption coefficient	0.704 1.756 0.82		0.823
Goodness-of-fit on F^2	0.990	1.339	1.141
$R_1^{a}, wR_2^{b} (I > 2\sigma(I))$	0.0440, 0.0873	0.0827, 0.2830	0.0277, 0.0858
R_1^a , wR_2^b (all data)	0.0742, 0.0975	0.0890, 0.2959	0.0308, 0.0927

 ${}^{a}R_{1} = \sum \|F_{0}| - |F_{c}\|/\sum |F_{0}| \cdot {}^{b}WR_{2} = [\sum w(F_{0}{}^{2} - F_{c}{}^{2})^{2}/\sum w(F_{0}{}^{2})]^{\frac{1}{2}}.$

Compound 1				
Cd(1)-O(1W)	2.371(3)	Cd(1)-O(4)	2.238(2)	
Cd(1)-O(1W)#1	2.371(3)	Cd(1)-O(4)#1	2.237(2)	
Cd(1)-N(3)	2.362(3)	Cd(1)-N(3)#1	2.362(3)	
O(1W)-Cd(1)-N(3)	80.977	O(1W)#1-Cd(1)-N(3)#1	80.977	
O(1W)-Cd(1)-O(4)	89.263	O(1W)#1-Cd(1)-O(4)#1	89.263	
O(1W)-Cd(1)- O(1W)#1	180.000	O(4)-Cd(1)-N(3)	83.502	
O(4)#1-Cd(1)-N(3)#1	83.502	O(4)-Cd(1)-O(4)#1	180.000	
N(3)-Cd(1)-N(3)#1	180.000			
Compound 2				
Cd(1)-O(7)	2.299(1)	Cd(1)-O(9)#1	2.371(0)	
Cd(1)-O(10)#1	2.477(7)	Cd(1)-O(11)	2.267(6)	
Cd(1)-N(3)	2.365(3)	Cd(1)-N(4)	2.317(8)	
O(11)-Cd(1)-O(7)	135.8(42)	O(11)-Cd(1)-O(9)#1	139.8(40)	
O(11)-Cd(1)-O(10)#1	89.5(42)	O(11)-Cd(1)-N(3)	79.0(89)	
O(11)-Cd(1)-N(4)	96.2(66)	O(7)-Cd(1)-O(9)#1	80.8(71)	
O(7)-Cd(1)-O(10)#1	134.2(87)	O(7)-Cd(1)-N(3)	94.1(27)	
O(7)-Cd(1)-N(4)	92.4(53)	N(4)-Cd(1)-O(9)#1	97.6(82)	
N(4)-Cd(1)-O(10)#1	86.2(24)	N(4)-Cd(1)-N(3)	173.418	
N(3)-Cd(1)-O(9)#1	82.2(20)	N(3)-Cd(1)-O(10)#1	89.0(61)	
O(9)#1-Cd(1)-O(10)#1	54.2(20)			
Compound 3				
Cd(1)-O(7)	2.379(8)	Cd(1)-O(8)	2.445(7)	
Cd(1)-O(9)	2.208(4)	Cd(1)-O(10)#1	2.260(5)	
Cd(1)-N(1)#2	2.357(7)	Cd(1)-N(6)	2.362(9)	
O(9)-Cd(1)-O(10)#1	114.1(70)	O(9)-Cd(1)-O(7)	145.9(23)	
O(9)-Cd(1)-O(8)	92.3(01)	O(9)-Cd(1)-N(1)#2	104.1(10)	
O(9)-Cd(1)-N(6)	89.5(91)	O(10)#1-Cd(1)-O(7)	99.3(84)	
O(10)#1-Cd(1)-O(8)	153.4(68)	O(10)#1-Cd(1)-N(1)#2	86.7(87)	
O(10)#1-Cd(1)-N(6)	85.5(42)	O(7)-Cd(1)-O(8)	54.1(02)	
N(1)#2-Cd(1)-O(7)	82.7(10)	N(1)#2-Cd(1)-O(8)	88.4(89)	
N(1)#2-Cd(1)-N(6)	166.1(21)	N(6)-Cd(1)-O(7)	87.1(49)	
N(6)-Cd(1)-O(8)	93.2(31)			

Table S2. Selected Bond lengths [Å] and angles [°] for compounds 1-3

Symmetry codes: for **1:** #1, 1-x, -y, 1-z; for **2**: #1, 1+x, y, z; for **3**: #1, 1-x, 2-y, -z; #2, -1+x, 1+y, -1+z;