Rationally Designed Hierarchical nickel-enabled magnetic yolk-like

nanospindles for enhanced catalyisis and protein adsorption

Qiong Wen^a, Min Zhang^{a*}, Jing Zheng^a, Jingli Xu^{a*}

^aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, PR China Email: zhangmin@sues.edu.cn; xujingli@sues.edu.cn

Fig. S1 Energy-disperse X-ray spectrum (EDS) mapping imagines and EDX spectrum of FeOx@SiO₂@C-Ni/900(c). (d) C, (e) O,(f) Si, (g) Fe, (h) Ni, (i) N

Fig. S2 The XRD Pattern of $Fe_2O_3@NS@PDA$ calcinated in nitrogen environment at 700 °C (a), and 900 °C (b).

Fig. S3 (A) successive reduction of 4-NP using $FeO_x@SiO_2@C-Ni/700$ as catalysts; (B) C/C_0 and $ln(C/C_0)$ versus time for the reduction of 4-NP over 1 mg $FeO_x@SiO_2@C-Ni/700$ catalysts; (C) successive reduction of 4-NP using $FeO_x@SiO_2@C-Ni/900$ as catalysts; (D) C/C_0 and $ln(C/C_0)$ versus time for the reduction of 4-NP over 1 mg $FeO_x@SiO_2@C-Ni/900$ catalysts.

Table	S1.	The	ICP	data	of	the	resultant	products	with	different	calcination
tempe	ratu	re bef	ore a	and aft	er o	ataly	tic reaction	า.			

Catalysts	Ni (µg.mg⁻¹)
FeO _x @SiO ₂ @C-Ni/500	256.67
SiO ₂ @C-Ni/700	394.69
SiO ₂ @C-Ni/900	474.32

Table S2. A full comparison of $FeO_x@SiO_2@C-Ni$ nanospindles catalysis activity and test condition with other nickel and noble metal catalysts.

Catalyst	Туре	K(×10 ⁻³ s ⁻¹)	к(g ⁻¹ S ⁻¹)	Ref.
FeO _x @SiO ₂ @C-Ni/500	nanospindles	46	179.22	This work
SiO ₂ @C-Ni/700	nanospindles	8.21	20.85	This work
SiO ₂ @C-Ni/900	nanospindles	7.66	16.15	This work
Au nanoparticles	nanoparticles	0.06	0.72	S1
Pd nanocatalysts	nanoparticles	0.73	0.36	S2
Fe ₃ O ₄ @SiO ₂ -Au@mSiO ₂	Core-shell	7.0	105	\$3
Au@meso-SiO₂	Hollow spheres	0.08	2.51	S4
Ni/SiO ₂	Core-shell	2.8	0.94	S 5
Cu ₂ O@Ag	Core-shell	0.44	1.09	S6

RGO-Ni	Nanosheets	0.25	0.04	S7
C-Ni/600	Nanoparticles	18.6	449	S8
Ni/SNTs	Nanotube	84	91	S9
Fe ₃ O ₄ @SiO ₂ -Ag	nanospheres	7.67	7.67	S10
Ni (modified)	Nanoparticles	2.4	0.80	S11
Ni/MC-550	Bottle-neck	1.51	338	S12

Fig. S4 The reusability of $FeO_x@SiO_2@C-Ni/500$ as the catalyst for the reduction of 4-NP with NaBH₄.

Adsorbent	Туре	Capacity (mg g ⁻¹)	Ref.
FeO _x @SiO ₂ @C-Ni/500	nanospindles	1893.0	This work
FeO _x @SiO ₂ @C-Ni/700	nanospindles	952.4	This work
FeO _x @SiO ₂ @C-Ni/900	nanospindles	724.6	This work
CNTs/Fe ₃ O ₄ @Cu Silicate	nanotubes	302.3	S13
Cu-IDA-silica-coated Fe ₃ O ₄	microspheres	418.6	S14
Magnetic HCNTs	nanotubes	2200	S15
Fe ₃ O ₄ @PVBC@IDA-Ni	core-shell	1988	S16
Fe ₃ O ₄ /Cys	nanospheres	53.2	S17
Fe ₃ O ₄ @SiO ₂ @LDH	Microspheres	239	S18
MnFe ₂ O ₄ @SiO ₂ @NH ₂ @2AB-Ni	nanoparticles	220	S19
Fe ₃ O ₄ @NiSiO ₃	Yolk-shell	220	S20
Fe ₃ O ₄ @SiO ₂ -IDA-Cu	nanoparticles	38.2	S21
P(PEGDMA-VI)@ECA	microspheres	22.0	S22
Fe ₃ O ₄ @SiO ₂ @C/Ni	nanoparticles	409.8	S23

Table S3. Properties of different adsorbents for His-rich proteins capture.

Fig. S5 Adsorption isotherms of protein BHb and Linear fitting of adsorption isotherms plots based on Langmuir model for $FeO_x@SiO_2@C-Ni/700$ (A,B), $FeO_x@SiO_2@C-Ni/900$ (C,D).

Fig. S6 The reusability of FeO_x@SiO₂@C-Ni/500.

Fig. S7 Curve a is UV-vis spectra of 0.4 mg mL⁻¹ of the BHb (A), BSA (B), BHb and BSA mixture (C), and 500-fold diluted bovine blood (D) before adsorbed by $FeO_x@SiO_2@C-Ni/500$ adsorbents. Curve b is the UV-vis spectra of the supernatant of the above BHb (A), BSA (B), BHb and BSA mixture (C), and 100-fold diluted bovine blood (D) after adsorption by adsorbents. Curve c is the UV-vis spectra of desorption solution of the adsorbed protein by adsorbents in BHb (A), BSA (B), BHb and BSA mixture (C) and 100-fold diluted bovine blood (D) after adsorbed protein by adsorbents in BHb (A), BSA (B), BHb and BSA mixture (C) and 100-fold diluted bovine blood (D) after adsorbed protein by adsorbents in BHb (A), BSA (B), BHb and BSA mixture (C) and 100-fold diluted bovine blood (D) using a concentration of 0.2 g.mL⁻¹ of imidazole solution as the eluent.

Notes and references

- S1. K. B. Narayanan and N. Sakthivel, J. Hazard. Mater., 2011, 189, 519-525.
- S2. X. Lu, X. Bian, G. Nie, C. Zhang, C. Wang and Y. Wei, J. Mater. Chem., 2012, 22, 12723-12730.
- Y. H. Deng, Y. Cai, Z. K. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang and D. Y. Zhao, J. Am. Chem. Soc., 2010, 132, 8466.
- S4. J. Chen, Z. Xue, S. Feng, B. Tu and D. Zhao, J. Colloid Interface Sci., 2014, 429, 62-67.
- S5. Z. Jiang, J. Xie, D. Jiang, J. Jing and H. Qin, *Cryst Eng Comm.*, 2012, **14**, 4601.
- S6. S. Kandula and P. Jeevanandam, *Eur. J. Inorg. Chem.*, 2016, **10**, 1548-1557.
- S7. Z. Ji, X. Shen, G. Zhu, H. Zhou and A. Yuan, J. Mater. Chem., 2012, 22, 3471-3477.
- S8. L. Ding, M. Zhang, Y. W. Zhang, J. B. Yang, J. Zheng, Tasawar Hayat, Njud S. Alharbi and J. L. Xu, nanotechnology., 2017, 34, 345601-345610.
- S9. Y. Chi, Q. Yuan, Y. J. Li, J. C. Tu, L. Zhao, N. Li, X. T. Li, J. Colloid Interface Sci., 2012, 383, 96-102.
- S11. Jiang Z, Xie J, Jiang D, Wei X and Chen M, Cryst Eng Comm., 2013, 15, 560-569.

- S12. Y. Yang, Y. Ren, C. Sun and S. Hao, Chem. Soc. Rev., 2014, 41, 5577-5578.
- S13. M. Zhang, Y. Wang, Y. Zhang, L. Ding, J. Zheng and J. L. Xu, *Appl. Surf. Sci.*, 2016, **375**, 154-161.
- S14. M. Zhang, D. Cheng, X. W. He, L. X. Chen and Y. K. Zhang, *Chem. Asian J.*, 2010, **5**, 1332-1340.
- S15. M. Zhang, B. Wang, Y. Zhang, W. Li, W. Gan and J. Xu, *Dalton Trans.*, 2016, **45**, 922-927.
- S16. J. L. Cao, X. H. Zhang, X. W. He, L. X. Chen, Y. K. Zhang, *J.Mater. Chem. B*, 2013, **1**, 3625-3632.
- X. Y. Zou, K. Li, Y. B. Zhao, Y. Zhang, B. J. Li and C. P. Song, J. Mater. Chem. B, 2013, 1, 5108-5113.
- M. F. Shao, F. Y. Ning, J. W. Zhao, M. Wei, David G. Evans and X. Duan, J. Am. Chem. Soc., 2012, 134, 2,1071-1078.
- Z. Rashid, H. Naeimi, A. H. Zarnani, M. Nazari, M. R. Nejadmoghaddam and R. Ghahremanzadeh, RSC Adv., 2016, 6, 36840-36848.
- Y. Wang, G. C. Wang, Y. Xiao, Y. L. Yang and R. K. Tang, ACS Appl. Mater. Inter., 2014, 6, 19092-19099.
- S21. G. Q. Jian, Y. X. Liu, X. W. He, L. X. Chen and Y. K. Zhang, Nanoscale, 2012, 4, 6336-6342.
- S22. C. B. Du, N. Zhang, S. C. Ding, X. M. Gao, P. Guan and X. L. Hu, Polym. Chem., 2016, 7, 1-3.
- S23. Y. W. Zhang, M. Zhang, J. B. Yang, L. Ding, J. Zheng, J. I. Xu, and S. L. Xiong, Name., 2016, 8, 15978-15988.
- S24. Y. Wei, Y. Li, A. Tian, Y. Fan, X. Wang, J. Mater. Chem. B, 2013, 1, 2066-2071.