ELECTRONIC SUPPLEMENTARY INFORMATION

Organic co-crystals of 1,3-bis(4-pyridyl)azulene with a series of hydrogen-bond donors

Adrian E. Ion,^{*a*} Andreea Dogaru,^{*a*} Sergiu Shova,^{*b*} Augustin M. Madalan,^{*c*} Oluseun Akintola,^{*d*} Sorana Ionescu,^{*e*} Mariana Voicescu,^{*f*} Simona Nica,^{**a*} Axel Buchholz,^{*d*} Winfried Plass,^{*d*} and Marius Andruh^{**c*}

^a "C. D. Nenitzescu" Institute of Organic Chemistry, Romanian Academy, Splaiul Independentei, no. 202B, 060023, Bucharest, Romania. E-mail: simona.nica@ccocdn.ro (Simona Nica)
^b "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Gica Voda 41A, 700487, Iasi, Romania.

^c Inorganic Chemistry Laboratory, Faculty of Chemistry, University of Bucharest, Str. Dumbrava Rosie nr. 23, 020464, Bucharest, Romania. E-mail: marius.andruh@dnt.ro (Marius Andruh)

^d Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07743 Jena, Germany

^e Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Blvd. Regina Elisabeta no 4-12, 030018, Bucharest, Romania.

^f "I. Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei, no. 202, 060023, Bucharest, Romania.

Table S1.	Summary	of sorption	parameters	for a	5.

Parameters	Values					
$A_{\rm BET}$ (m2/g)	13					
Total pore volume (cm3/g)	0.26					
Modal pore width (nm)	26					
Consistency parameters derived from the BET analyses						
P/P_o range	0.13-0.27					
С	39.2					
$V_{\rm m}$ (cm ³ /g)	2.92					
$P/Po(V_m)$	0.137					
$\theta(P/P_o)$	0.138					
R	0.999					

Table S2. Contributions (%) of various types of close contacts to the Hirshfeld surface area as obtained from 2D fingerprints, summed for one or two non-equivalent azbipy molecules and the unit structure.

Atom	1	2	3			4		5		6	
	azbipy	azbipy	total								
С…Н	29.0	29.0	30.9	20.5	24.0	30.8	29.1	13.5	14.8	12.8	13.6
C···C	10.3	9.8	6.7	6.6	4.6	9.6	8.7	7.2	9.7	13.0	9.7
$C \cdots N$	0.0	0.3	0.4	1.0	0.7	3.3	2.7	1.8	1.4	4.1	2.3
$N \cdots N$	0.0	0.0	0.0	0.1	0.1	0.2	0.1	0.1	0.1	0.4	0.2
Н…Н	44.7	45.9	44.0	45.4	41.9	40.1	39.5	50.0	41.7	44.5	39.4
N····H	16.0	10.9	9.3	8.5	4.7	9.0	6.8	5.1	3.4	2.4	2.3
О…Н	-	2.4	6.6	16.9	21.1	6.4	12.2	17.5	22.9	21.1	29.6
0····C	-	1.1	1.3	0.5	2.0	0.6	0.8	4.1	2.3	1.8	1.9
O…N	-	0.6	0.7	0.5	0.3	0.1	0.0	0.6	0.8	0.0	0.0
0…0	-	0.0	0.0	0.0	0.6	0.0	0.0	0.0	0.0	0.0	0.9

Figure S2. 2D fingerprint plots decomposed on types of close contacts for non-equivalent molecules in the studied crystals.

Figure S3. 2D fingerprint plots decomposed on types of close contacts for one or two non-equivalent azbbpy molecules in the studied crystals.

Figure S4. 2D fingerprint plots decomposed on types of close contacts for each non-equivalent azbbpy molecule in crystals 3 and 4.

Figure S5. TG curves for compounds 2 - 5.

Figure S6. Pore distribution curve for **5** fitted using N_2 at 77 K on carbon (slit/cylindrical pores, QSDFT adsorption branch model).

Figure S7. Fluorescence emission spectra: a) azbbpy in CH_2Cl_2 solution ($\lambda_{ex} = 425$ nm); b) solids ($\lambda_{ex} = 400$ nm)

