Supporting Information for the Manuscript Exploring the Syntheses, Structures, Topologies, Luminescence Sensing and Magnetism of Zn(II) and Mn(II) Coordination Polymers Based on a Semirigid Tricarboxylate Ligand

Shaodong Li^a, Liping Lu^{*a}, Miaoli Zhu^{*a,c}, Sisi Fen^{a,c}, Feng Su^b, Xuefeng Zhao^{a,c}

^aInstitute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China. luliping@sxu.edu.cn

^bDepartment of chemistry, Changzhi University, Changzhi 046011, People's Republic of China.

^cKey Laboratory of Materials for Energy Conversion and Storage of Shanxi Province; Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China. miaoli@sxu.edu.cn

Complex 1					
Mn(1)-O(1)	2.0986(16)	O(1)-Mn(1)-O(2)#1	109.34(8)		
Mn(1)-O(2)#1	2.1313(18)	O(1)-Mn(1)-O(3)#2	99.05(8)		
Mn(1)-O(3)#2	2.1572(17)	O(2)#1-Mn(1)-O(3)#2	89.30(8)		
Mn(1)-O(8)	2.251(3)	O(1)-Mn(1)-O(8)	88.54(9)		
Mn(1)-N(1)	2.292(2)	O(2)#1-Mn(1)-O(8)	161.89(9)		
Mn(1)-N(2)	2.304(2)	O(3)#2-Mn(1)-O(8)	90.69(9)		
O(1)-Mn(1)-O(2)#1	109.34(8)	N(2)-Mn(1)-O(2)#2	149.29(7)		
O(1)-Mn(1)-O(3)#2	99.05(8)	N(1)-Mn(1)-O(2)#2	85.68(8)		
O(2)#1-Mn(1)-O(3)#2	89.30(8)	O(4)-Mn(1)-C(15)#2	130.38(8)		
O(1)-Mn(1)-O(8)	88.54(9)	O(5)#1-Mn(1)-C(15)#2	100.66(9)		
O(2)#1-Mn(1)-O(8)	161.89(9)	O(3)#2-Mn(1)-C(15)#2	29.32(8)		
O(3)#2-Mn(1)-O(8)	90.69(9)	N(2)-Mn(1)-C(15)#2	125.81(8)		
O(1)-Mn(1)-N(1)	156.43(9)	N(1)-Mn(1)-C(15)#2	87.36(8)		
O(2)#1-Mn(1)-N(1)	89.54(10)	O(2)#2-Mn(1)-C(15)#2	28.90(8)		
	Comple	ex 2			
Mn(1)-O(8)	2.139(3)	O(8)-Mn(1)-N(7)	87.65(14)		
Mn(1)-O(10)#1	2.175(4)	O(10)#1-Mn(1)-N(7)	95.09(14)		
Mn(1)-O(1)	2.212(4)	O(1)-Mn(1)-N(7)	86.88(14)		
Mn(1)-N(3)	2.214(4)	N(3)-Mn(1)-N(7)	172.79(17)		
Mn(1)-O(15)	2.218(3)	O(15)-Mn(1)-N(7)	91.12(14)		
Mn(1)-N(7)	2.252(4)	O(12)#1-Mn(2)-O(9)	96.82(13)		
Mn(2)-O(12)#1	2.168(3)	O(12)#1-Mn(2)-O(3)#2	83.34(13)		
Mn(2)-O(9)	2.172(4)	O(9)-Mn(2)-O(3)#2	179.17(13)		
Mn(2)-O(3)#2	2.175(3)	O(12)#1-Mn(2)-O(2)#3	170.34(14)		
Mn(2)-O(2)#3	2.193(4)	O(9)-Mn(2)-O(2)#3	91.00(13)		
Mn(2)-N(5)	2.272(4)	O(3)#2-Mn(2)-O(2)#3	88.75(14)		
Mn(2)-N(2)	2.279(4)	O(12)#1-Mn(2)-N(5)	99.31(14)		
O(8)-Mn(1)-O(10)#1	95.95(14)	O(9)-Mn(2)-N(5)	88.28(14)		
O(8)-Mn(1)-O(1)	90.59(14)	O(3)#2-Mn(2)-N(5)	92.49(14)		
O(10)#1-Mn(1)-O(1)	173.24(13)	O(2)#3-Mn(2)-N(5)	86.53(14)		
O(8)-Mn(1)-N(3)	96.93(15)	O(12)#1-Mn(2)-N(2)	85.76(15)		
O(10)#1-Mn(1)-N(3)	89.99(15)	O(9)-Mn(2)-N(2)	87.17(15)		
O(1)-Mn(1)-N(3)	87.50(15)	O(3)#2-Mn(2)-N(2)	92.04(15)		
O(8)-Mn(1)-O(15)	175.01(14)	O(2)#3-Mn(2)-N(2)	89.00(15)		
O(10)#1-Mn(1)-O(15)	79.33(13)	N(5)-Mn(2)-N(2)	173.56(16)		
O(1)-Mn(1)-O(15)	94.18(13)	N(3)-Mn(1)-O(15)	84.78(15)		

Tables S1. Selected bond lengths [Å] and angles [°] for complexes 1-4.

Complex 3

Zn(1)-O(1)	1.978(2)	O(1)-Zn(1)-O(4)#1	111.54(11)
Zn(1)-O(4)#1	2.012(2)	O(1)-Zn(1)-O(2)#2	112.52(10)
Zn(1)-O(2)#2	2.058(2)	O(4)#1-Zn(1)-O(2)#2	84.71(10)
Zn(1)-N(2)	2.149(3)	O(1)-Zn(1)-N(2)	100.04(11)
Zn(1)-N(1)	2.156(3)	O(4)#1-Zn(1)-N(2)	100.97(11)
O(4)#1-Zn(1)-N(1)	154.18(11)	O(2)#2-Zn(1)-N(2)	142.31(11)
O(2)#2-Zn(1)-N(1)	82.38(10)	O(1)-Zn(1)-N(1)	94.07(10)
N(2)-Zn(1)-N(1)	76.71(11)		

Complex 4

Zn(1)-O(1)	2.057(4)	N(2)-Zn(1)-O(1)#1	90.46(17)
Zn(1)-N(2)	2.089(5)	O(5)-Zn(1)-O(1)#1	170.19(18)
Zn(1)-O(5)	2.109(4)	O(1)-Zn(1)-O(8)	154.98(18)
Zn(1)-O(7)	2.146(5)	N(2)-Zn(1)-O(8)	96.8(2)
Zn(1)-O(1)#1	2.175(4)	O(5)-Zn(1)-O(8)	92.8(2)
Zn(1)-O(8)	2.235(6)	O(7)-Zn(1)-O(8)	59.9(2)
Zn(1)-C(15)	2.537(7)	O(1)#1-Zn(1)-O(8)	96.38(18)
Zn(2)-O(4)	1.956(4)	O(1)-Zn(1)-C(15)	125.4(2)
Zn(2)-O(1)	1.961(4)	N(2)-Zn(1)-C(15)	126.2(2)
Zn(2)-O(3)#2	1.994(5)	O(5)-Zn(1)-C(15)	97.7(2)
Zn(2)-N(1)#3	2.018(5)	O(7)-Zn(1)-C(15)	30.3(2)
O(1)-Zn(1)-N(2)	107.91(19)	O(1)#1-Zn(1)-C(15)	91.94(18)
O(1)-Zn(1)-O(5)	92.97(18)	O(8)-Zn(1)-C(15)	29.6(2)
N(2)-Zn(1)-O(5)	85.15(19)	O(4)-Zn(2)-O(1)	108.86(18)
O(1)-Zn(1)-O(7)	95.15(19)	O(4)-Zn(2)-O(3)#2	122.3(2)
N(2)-Zn(1)-O(7)	156.3(2)	O(1)-Zn(2)-O(3)#2	99.78(18)
O(5)-Zn(1)-O(7)	99.5(2)	O(4)-Zn(2)-N(1)#3	100.4(2)
O(1)-Zn(1)-O(1)#1	80.03(17)	O(1)-Zn(2)-N(1)#3	127.04(19)
N(2)-Zn(1)-O(1)#1	90.46(17)	O(3)#2-Zn(2)-N(1)#3	100.4(2)
O(5)-Zn(1)-O(1)#1	170.19(18)		

Symmetry codes: for complex 1: #1 -x+1, -y, -z+1; #2 -x+1, -y, -z; for complex 2: #1 x, y-1, z; #2 x-1, y-1, z; #3 x-1, y, z; for complex 3: #1 x, -y+1/2, z-1/2; #2 -x+1, -y, -z; for complex 4: #1 -x+1, - y+1, -z+1; #2 -x, y-1/2, -z+1/2; #3 x, y, z-1.

	Tubles 52 Hydrogen conds in erystar packing [H,] of complexes 1 5.						
	D-H···A	<i>d</i> (D-H)	<i>d</i> (HA)	<i>d</i> (DA)	<(DHA)	Symmetry code	
1	O(8)-H(8A)···O(5) O(8)-H(8B)···O(3) O(6)-H(6)···O(8)	0.84 0.83 0.84	2.39 1.88 1.67	3.008(7) 2.661(6) 2.506(6)	131.4 156.6 175.2	x, -y+1/2, z-1/2 -x, y-1/2, -z+1/2	
2	$O(15)-H(15B)\cdots O(11)$ $O(15)-H(15A)\cdots O(3)$ $O(13)-H(13)\cdots O(4)$ $O(7)-H(7A)\cdots O(6)$	0.82 0.82 0.82 0.82	2.31 1.86 1.79	3.121(5) 2.651(5) 2.612(5) 2.648(6)	168.6 162.8 176.0	x, y-1, z x, y-1, z -x+2, -y+3, -z+1 x+1, y+2, z	
3	O(6)-H(6A)···O(3) O(8)-H(8A)···O(5)	0.82	1.92 2.41	2.705(4) 3.091(7)	159.3 141.5	x+1, y, z x, -y+1/2, z+1/2	

1.97

2.778(8)

169.3

0.82

O(8)-H(8B)····O(3)

Tables S2. Hydrogen bonds in crystal packing [Å, °] of complexes 1-3.

Fig. S1 The IR spectra of H₃cpota ligand and complexes 1-4.

Fig. S2 3D supramolecular architecture of 3 viewed along the *ab* plane. (Blank dotted lines present the H-bonds).

Fig. S3 PXRD patterns of complexes **1–4** at room temperature. Blank patterns correspond to the experimental data obtained using the as-synthesized bulk samples. Red patterns were simulated from the single crystal X-ray data.

Fig. S5 Digital photograph for the fluorescence of complexes 3 and 4 under 365nm UV radiation.

Fig. S6 The luminescent quantum yields of complexes 3 and 4.

Fig. S7 The frontier MOs of H_3 cpota ligand and complexes 3 and 4.

Fig. S8 PXRD patterns of 3 (a) and 4 (b) in different solvent.

Table S3	ICP	experiments	of 3	and 4	1 after	immersing	in	adileolis	solution
Table 55.	ICF	experiments	01 3	anu -	anci	mmersing	$, \mathbf{m}$	aqueous	solution

Sample	Concentration of Zn(II) ions (ug/mL)
Blank sample (H ₂ O)	0.0562
Sample 1	0.5230
Sample 2	0.2796

(The Sample 1 was the aqueous solution after 10 mg samples of **3** immersed for one week, The Sample 2 was the aqueous solution after 10 mg samples of **4** immersed for one week.)

Fig. S9 (a) The emission spectra of complex 3 in different solvents. (b) The emission intensity of complex 3 in different solvents.

Fig. S10 (a) The emission spectra of complex **4** in different solvents. (b) The emission intensity of complex **4** in different solvents.

Section S1: Calculation of detection limit for $Cr_2O_7^{2-}$ and CrO_4^{2-} .

Detection limit (LOD = $3\sigma/m$) was calculated as early reports,^{S1} where the σ equal to $100 \times (I_{SE}/I_0)$, I_{SE} is the standard error of the luminescence intensity measurement, as determined by the baseline measurement of blank samples monitored at 370 nm, and I_0 is the measured luminescence intensity of **3** in deionized water. The slope(*m*) was obtained from the linear fit of the concentration-dependent luminescence intensity curve in the low concentration region. In a typical experiment to determine limit of detection, incremental amount of 0.001 M aqueous Cr₂O₇²⁻ /CrO₄²⁻ solution in the volume ranging 0.0 µL to 100 µL was added to the water suspension (2 mg complex **3** dispersed in 2 ml water) of complex **3**. The slope should be the correlation between the chromium concentration and $(I_0 - I)/I_0$ %. I is the fluorescence intensity thus observed for each incremental addition of aqueous Cr₂O₇²⁻/CrO₄²⁻ solution. Slop of the curve thus drawn was found to be Cr₂O₇²⁻ = 0.685 (R₂ = 0.996); CrO₄²⁻ = 0.275 (R₂ = 0.995) for complex **3** (Fig. S11).

Fig. S11 Linear region of fluorescence intensity ($\lambda_{ex} = 290 \text{ nm}$) of complex 3 suspensions in water upon incremental addition of $Cr_2O_7^{2-}/CrO_4^{2-}$ solutions.

Complex 3	Blank	$Cr_2O_7^{2-}$	CrO ₄ ²⁻
	1	3196720	3543720
	2	3245180	3536540
Fluorescence Intensity	3	3235170	3556430
Complex 3	4	3232670	3549820
	5	3187530	3554690
I_{SE}		25590.32	26361.41
I_0		3088490	3553320
Standard deviation (σ)		0.829	0.742
Slope (m)		0.685	0.276
Detection limit $(3\sigma/m)$		3.62 µM	8.06 µM

Table S4 LOD	calculations for	or $Cr_2O_7^2$	and CrO_4^{2-}
--------------	------------------	----------------	------------------

Table S5. Comparison of various CPs sensors for the detection of Cr(VI).

	CPs ^a	Analyte(CrO ₄ ²⁻	$K_{\rm sv}{}^1$	LOD(µM)	Media	Ref
		/Cr ₂ O ₇ ²⁻)				
1	[Zn(btz)] _n	CrO ₄ ²⁻	3.19 × 10 ³	10	H ₂ O	S2
		Cr ₂ O ₇ ²⁻	4.23×10^{3}	2		
	$[Zn(ttz)H_2O]_n$	CrO ₄ ²⁻	2.35×10^{3}	20	H ₂ O	
		Cr ₂ O ₇ ²⁻	2.19×10^{3}	2		
2	$[Zn(IPA)(L)]_n$	CrO ₄ ²⁻	1.00×10^{3}	18.33	H ₂ O	S3
		Cr ₂ O ₇ ²⁻	1.37×10^{3}	12.02		
	[Cd(IPA)(L)] _n	CrO ₄ ²⁻	1.30×10^{3}	2.52		
		Cr ₂ O ₇ ²⁻	2.91×10^{3}	2.26		
3	${[Cd(4-BMPD)(BPDC)] \cdot 2H_2O}_n$	Cr ₂ O ₇ ²⁻	6.4 × 10 ³	37.6	H ₂ O	S4
	{[Cd(4-	Cr ₂ O ₇ ²⁻	4.97×10^{3}	48.6		
	BMPD)(SDBA)(H ₂ O)] \cdot 0.5H ₂ O} _n					
4	$[Eu_2(tpbpc)_4 \cdot CO_3 \cdot H_2O] \cdot DMF \cdot solvent$	CrO ₄ ²⁻	4.85×10^{3}	0.33	H ₂ O	S5

		Cr ₂ O ₇ ²⁻	1.04×10^4	1.07		
5	Eu(CBIP)(HCOO)(H ₂ O)] _n	CrO ₄ ²⁻	1.54×10^{3}	1.2	H ₂ O	S6
		Cr ₂ O ₇ ²⁻	2.76×10^{3}	1.0		
	Tb(CBIP)(HCOO)(H ₂ O)] _n	CrO ₄ ²⁻	130×10^3	1.8	H ₂ O	
		Cr ₂ O ₇ ²⁻	2.13× 10 ³	2.1		
6	[Cd(4-tkpvb)(5-tert-BIPA)] _n	CrO ₄ ²⁻	4.68 × 104	0.08	H ₂ O	S7
		Cr ₂ O ₇ ²⁻	2.50 × 104	0.12		
7	$[Zn(\mu_3-Hcpota)(phen)]_n \cdot nH_2O$	CrO ₄ ²⁻	3.51×10^{3}	8.06	H ₂ O	This
		Cr ₂ O ₇ ²⁻	$1.00 imes 10^4$	3.62		work

(aAbbreviations of involved ligands in compounds: $H_2btz = 1,5$ -bis(5-tetrazolo)-3-oxapentane; $H_3ttz = 1,2,3$ -tris-[2-(5-tetrazolo)-ethoxy]propane; L = 3-pyridylcarbox-aldehyde nicotinoylhydrazone; $H_2IPA =$ isophthalic acid; 4-BMPD = 4,4'-(2,5-bis-(methylthio)-1,4-phenylene)dipyridine; $H_2BPDC = 4,4'$ -biphenyldicarboxylic acid, $H_2SDBA = 4,4'$ -sulfonyldibenzoic acid; Htpbpc = 4'-[4,2';6',4'']-terpyridin-4'-yl-biphenyl-4-carboxylic acid; $H_2CBIP = 5-((2'$ -cyano-[1,1'-biphenyl]-4-yl)methoxy)isophthalic acid; 4-tkpvb = 1,2,4,5-tetrakis(4pyridylvinyl)benzene; 5-tert-H2BIPA = 5-tert-butyl-isophthalic acid.) ($^1 K_{sv}$ = quenching constant, M^{-1}).

Fig. S12 The PXRD patterns of simulated complex **3** and the PXRD patterns of **3** for the recognition of $Cr_2O_7^{2-}$ and CrO_4^{2-} after five recycling processes.

Fig. S13 The SEM images of the (a-b) pure phase **3**, (c-d) **3** after $Cr_2O_7^{2^-}$ detection experiment, and (e-f) **3** after $CrO_4^{2^-}$ detection experiment, with the bars of 10 µm and 1 µm, respectively.

Fig. S14 Liquid UV-vis spectra of various different anions and complex 3 in the aqueous solution.

Fig. S15 Liquid UV-vis spectra of $Cr_2O_7^{2-}$ and CrO_4^{2-} anions and emission spectra of complex **3** in the aqueous solution.

REFERENCES

S1. (a) W. Liu, Y. Wang, Z. Bai, Y. Li, Y. Wang, L. Chen, L. Xu, J. Diwu, Z. Chai and S. Wang, ACS. Appl. Mater. Inter., 2017, 9, 16448; (b) G.-P. Li, G. Liu, Y.-Z. Li, L. Hou, Y.-Y. Wang and Z. Zhu, Inorg. Chem., 2016, 55, 3952; (c) Z.-J. Wang, F.-Y. Ge, G.-H. Sun and H.-G. Zheng, Dalton Trans., 2018, 47, 8257; (d) J.-M. Han, M. Xu, B. Wang, N. Wu, X. Yang, H. Yang, B. J. Salter and L. Zang, J. Am. Chem. Soc., 2014, 136, 5090.
S2. C-S. Cao, H.-C. Hu, H. Xu, W.-Z. Qiao, and B. Zhao, CrystEngComm, 2016, 18, 4445.
S3. B. Parmar, Y. Rachuri, K.K. Bisht, R. Laiya, and E. Suresh, Inorg. Chem., 2017, 56, 2627.

S4. S. Chen, Z. Shi, L. Qin, H. Jia, and H. Zheng, Cryst. Growth. Des., 2017, 17, 67

S5. J. Liu, G. Ji, J. Xiao, and Z. Liu, Inorg. Chem., 2017, 56, 4197.

S6. Z. Sun, M. Yang, Y. Ma and L. Li, Cryst. Growth.Des., 2017, 17, 4326.

S7. W. J. Gong, R. Yao, H. X. Li, Z. G. Ren, J. G. Zhang and J. P. Lang, Dalton Trans., 2017, 46, 16861.