Electronic Supplementary Information

Mimic biomineralization matrix using bacterial cellulose hydrogel and egg white to prepare various morphologies of CaCO₃

Xun Liu,*^a Yong Zhou ^b and Chonghua Pei *^a

^a State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010, China

^b Department of Materials Science and Engineering, National Lab of Solid State Microstructure, ERERC, Nanjing University, Nanjing 210093, China

EXPERIMENTAL SECTION

During mineralization for this study, the initial concentrations were 0.2 mol/L for CaCl₂ and NaCO₃. The concentration of egg white varied from 0% to 100%. The reaction solutions were replaced every 12 hours to keep the concentration of Ca^{2+} and CO_3^{2-} constant. The mineralization time was fixed at 7 days. After formation, the mineral was extracted, washed with ultra-pure water, and then dried.

COMPONENT ANALYSIS

In order to confirm the composition of the mineralized particles, FT-IR was used to characterize the samples, and the results for three representative samples prepared at egg-white concentrations of 0%, 30%, and 80%, respectively, appear in Figure S1. In the FT-IR spectra, the peaks at 1409 cm⁻¹, 873 cm⁻¹ and 710 cm⁻¹ respectively indicate the asymmetry stretching vibration, out-of-plane bending, and in-plane bending of $CO_3^{2^{-}}$. These are the characteristic absorption peaks of CaCO₃. The peak at 3347 cm⁻¹ is the stretching vibration absorption spectrum of the O-H that is part of the carbohydrate chain of the BC. The weak absorption peaks of the C-NH₂ stretching vibration (1111 cm⁻¹) and NH₂⁺ bending vibration (1648 cm⁻¹) indicate the presence of EWP. Therefore, the main component of all the samples is CaCO₃. The sample prepared at an egg-white concentration 0% (Curve a) contains a certain amount of BC, and no EWP peaks are found, which is in agreement with the experiment. The sample prepared at 80% egg-white concentration (Curve c) has weak EWP peaks, indicating the presence of EWP in the mineral. However, the sample also has an absorption peak at 3347 cm⁻¹, disagreeing with the results of the SEM test. In view of the weak intensity, we think it is not caused by BC, but by a small amount of adsorbed water on the surface of the mineral. As for the sample prepared at an egg-white concentration of 30% (Curve b), it contains both BC and EWP.

Figure S1. FT-IR spectra of the sample mineralized at egg-white concentrations of 0% (pure water, Curve a), 30% (Curve b) and 80% (Curve c).

DETAILED SEM CHARACTERIZATION

Figure S2. Enlarged SEM image of the sample mineralized at an egg-white concentration of 0%

Figure S3. Lateral surfaces of the sample mineralized at an egg-white concentration of 30% (a) and 50% (b), as well as the face of the sample mineralized at an egg-white concentration of 30% (c, d).

Figure S4. Enlarged SEM image of the sample mineralized at different egg-white concentrations: a, 5%; b, 10%; c, 15%; d, 20%.

Figure S5. SEM images of the samples mineralized at the egg-white concentrations of 60% (the inner ends of the BCH).

Figure S6. Enlarged SEM image of the sample mineralized at egg-white concentration of 80% (white circles indicate small undeveloped papillae).