Supporting Information

Charge Control the Formation of Two Neutral/Cationic Metal–Organic Frameworks Based on Neutral/Cationic Triangular Clusters and Isonicotinic Acid: Structure, Gas Adsorption and Magnetism

Lei Zhou, Baolei Zhou, Zheng Cui, Bowen Qin, Xiaoying Zhang*, Wenliang Li* and Jingping Zhang* Advanced Energy Materials Research Center, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China

Corresponding Author

* jpzhang@nenu.edu.cn

* zhangxy218@nenu.edu.cn

* liw1926@nenu.edu.cn

Compound	Mn-Ac	Со-DMA
empirical formula	$C_{26}H_{24}N_4O_{13}Mn_3$	$C_{72}H_{104}N_{14}O_{40}Cl_2Co_6$
$M_{ m r}$	765.30	2230.07
<i>T</i> (K)	293(2)	293(2)
Crystal system	orthorhombic	orthorhombic
Space group	Pnnm	Pnma
<i>a</i> (Å)	12.402	19.582
<i>b</i> (Å)	14.734	20.1291
<i>c</i> (Å)	20.85	12.0113
α (deg)	90	90
β (deg)	90	90
γ (deg)	90	90
$V(\text{\AA}^3)$	3809.943	4734.5(4)
Z	4	2
$ ho_{ m calcd}/ m g~ m cm^{-3}$	1.303	1.366
GOF	1.125	1.061
$R_1 \left[I > 2\sigma(I) \right]$	0.0437	0.0786
$wR_2 \left[I > 2\sigma(I) \right]$	0.1285	0.2356

Table S1. The crystallographic data for complexes Mn-Ac and Co-DMA.

 $R_1 = \sum (||F_0| - |F_c||) / \sum |F_0|. \ w R_2 = [\sum w (|F_0|^2 - |F_c|^2)^2 / \sum w (F_0^2)^2]^{1/2}.$

Table S2. Selected bond lengths (Å) and angles (°) for Mn-Ac.

Bond lengths [Å]						
Mn(1)-O(2)#1	2.150(2)	Mn(2)-O(4)	2.137(2)			
Mn(1)-O(2)	2.150(2)	Mn(2)-O(3)	2.155(2)			
Mn(1)-O(1)	2.163(3)	Mn(2)-O(6)	2.160(2)			
Mn(1)-O(7)	2.211(3)	Mn(2)-O(1)	2.1608(16)			
Mn(1)-N(2)#2	2.310(4)	Mn(2)-O(5)	2.244(2)			
Mn(1)-N(3)#3	2.315(4)	Mn(2)-N(1)#4	2.327(3)			
	Angles [deg]					
O(2)#1-Mn(1)-O(2)	164.65(13)	O(4)-Mn(2)-O(3)	96.46(12)			
O(2)#1-Mn(1)-O(1)	96.65(7)	O(4)-Mn(2)-O(6)	90.39(12)			
O(2)-Mn(1)-O(1)	96.65(7)	O(3)-Mn(2)-O(6)	161.91(10)			
O(2)#1-Mn(1)-O(7)	86.73(7)	O(4)-Mn(2)-O(1)	90.34(11)			
O(2)-Mn(1)-O(7)	86.73(7)	O(3)-Mn(2)-O(1)	97.34(9)			
O(1)-Mn(1)-O(7)	85.50(12)	O(6)-Mn(2)-O(1)	99.35(9)			
O(2)#1-Mn(1)-N(2)#2	92.98(7)	O(4)-Mn(2)-O(5)	172.18(10)			

O(2)-Mn(1)-N(2)#2	92.98(7)	O(3)-Mn(2)-O(5)	89.87(11)
O(1)-Mn(1)-N(2)#2	96.91(13)	O(6)-Mn(2)-O(5)	84.90(11)
O(7)-Mn(1)-N(2)#2	177.59(14)	O(1)-Mn(2)-O(5)	84.28(11)
O(2)#1-Mn(1)-N(3)#3	82.90(6)	O(4)-Mn(2)-N(1)#4	88.31(10)
O(2)-Mn(1)-N(3)#3	82.90(6)	O(3)-Mn(2)-N(1)#4	81.35(9)
O(1)-Mn(1)-N(3)#3	172.42(13)	O(6)-Mn(2)-N(1)#4	82.14(9)
O(7)-Mn(1)-N(3)#3	86.92(14)	O(1)-Mn(2)-N(1)#4	178.00(11)
N(2)#2-Mn(1)-N(3)#3	90.67(14)	O(5)-Mn(2)-N(1)#4	97.21(10)

Symmetry Code: #1 x,y,-z; #2 -x,-y,-z; #3 x-1,y,z; #4 x+1/2,-y+1/2,-z+1/2.

Table S3. BVS calculations for the Mn ions in complex Mn-Ac.

Atom	Mn ^{II}	Mn ^{III}	Mn ^{IV}	Mn ^{VII}
Mn1	2.04	1.93	1.90	2.04
Mn2	2.08	1.94	1.91	2.08

Table S4. Selected bond lengths (Å) and angles (°) for Co-DMA.

Bond lengths [Å]						
Co(1)-O(2)	2.045(4)	Co(2)-O(1)	2.079(5)			
Co(1)-O(4)	2.053(7)	Co(2)-O(3)#1	2.086(4)			
Co(1)-O(6)	2.074(5)	Co(2)-O(3)	2.086(4)			
Co(1)-O(5)	2.099(4)	Co(2)-N(3)	2.157(7)			
Co(1)-O(1)	2.100(3)	Co(2)-O(8)	2.178(7)			
Co(1)-O(7)	2.127(6)	Co(2)-N(2)	2.187(6)			
Co(1)-N(1)	2.188(5)					
Angles [deg]						
O(2)-Co(1)-O(4)	161.3(3)	O(5)-Co(1)-N(1)	84.03(18)			
O(2)-Co(1)-O(6)	86.9(3)	O(1)-Co(1)-N(1)	175.7(2)			
O(4)-Co(1)-O(6)	81.7(3)	O(7)-Co(1)-N(1)	90.4(2)			
O(2)-Co(1)-O(5)	164.1(2)	O(1)-Co(2)-O(3)#1	96.69(11)			
O(4)-Co(1)-O(5)	22.8(2)	O(1)-Co(2)-O(3)	96.69(11)			
O(6)-Co(1)-O(5)	104.3(2)	O(3)#1-Co(2)-O(3)	166.5(2)			
O(2)-Co(1)-O(1)	96.66(17)	O(1)-Co(2)-N(3)	92.7(2)			
O(4)-Co(1)-O(1)	98.9(2)	O(3)#1-Co(2)-N(3)	90.60(13)			
O(6)-Co(1)-O(1)	93.8(2)	O(3)-Co(2)-N(3)	90.60(13)			

O(5)-Co(1)-O(1)	93.85(18)	O(1)-Co(2)-O(8)	86.8(2)
O(2)-Co(1)-O(7)	93.8(3)	O(3)#1-Co(2)-O(8)	89.46(13)
O(4)-Co(1)-O(7)	97.8(3)	O(3)-Co(2)-O(8)	89.46(13)
O(6)-Co(1)-O(7)	179.1(2)	N(3)-Co(2)-O(8)	179.5(2)
O(5)-Co(1)-O(7)	75.2(2)	O(1)-Co(2)-N(2)	176.4(2)
O(1)-Co(1)-O(7)	85.4(2)	O(3)#1-Co(2)-N(2)	83.26(11)
O(2)-Co(1)-N(1)	84.67(17)	O(3)-Co(2)-N(2)	83.26(11)
O(4)-Co(1)-N(1)	80.6(2)	N(3)-Co(2)-N(2)	90.9(3)
O(6)-Co(1)-N(1)	90.3(2)	O(8)-Co(2)-N(2)	89.6(3)

Symmetry Code: #1 x,-y+1/2,z.

Table S5. BVS calculations for the Co ions in complex Co-DMA.

Atom	Соп	Co ^{III}
Col	2.14	2.18
Co2	2.09	2.12

Fig. S1 View of the coordination environment of $[Mn_3-CH_3COO^-]$ triangular core. The $[Mn_3-CH_3COO^-]$ units, acting as 8-connected nodes, are interlinked by a double-CH₃COO⁻ and a double-in⁻ linkers above and below the *ac* plane, respectively and six in⁻ linkers in *ac* plane to form a 3D open framework **Mn-Ac** with 8-connected *hex* topology. H atoms are omitted for clarity. Symmetry Code: a x,y,-z.

Fig. S2 View of the coordination environment of [Co₃-DMA] triangular core. The [Co₃-DMA] units, acting as 8-connected nodes, are interlinked by eight in⁻ linkers to form a 3D open framework **Co-DMA** with 8-connected *hex* topology. H atoms are omitted for clarity. Symmetry Code: a x,0.5-y,z.

Fig. S3 The PXRD patterns of Mn-Ac (a) and Co-DMA (b).

Fig. S4 The TGA curves of Mn-Ac (a) and Co-DMA (b).

Sorption properties

The as-synthesized **Mn-Ac** and **Co-DMA** (~100 mg) samples were washed three times with EtOH/MeCN and DMA, respectively. After that, they were placed in 20 ml vial without sealed caps and were heated under vacuum at 85°C for 24 h. Before the adsorption measurements, the samples were dried through the "degas" function of the adsorption instrument for 12 h at 100°C.

Fig. S5 (a) N₂-adsorption isotherms at 77 K for Mn-Ac (a) and Co-DMA (b). Filled and open symbols represent adsorption and desorption branches respectively. (Inset) Pore size distribution analyzed by DFT methods.

Fig. S6 CO₂ sorption isotherm of Mn-Ac at 195 K.

Fig. S7 (a) The PXRD patterns of Mn-Ac after an activation process and samples are measured with CO₂ and N₂.

Fig. S8 (a) The PXRD patterns of Co-DMA after an activation process and after samples are measured with CO2 and N2.

CO₂/CH₄ and CO₂/N₂ Selectivity Prediction via Henry's law

The experimental isotherm data for pure CO₂, CH₄ and N₂ were fitted using a Single-site Langmuir model:

$$V_{ads}^{\ i} = \frac{V_{1i}K_{1i}P}{1 + K_1P}$$

Where V_{ads} is the total amount adsorbed in cm³ g⁻¹, *P* is the applied pressure in atm, V_i is the saturation capacity in cm³ g⁻¹, and K_i is the Langmuir affinity constant expressed in atm⁻¹. The fitting of the isotherm models was achieved by calculating the K_i and V_i parameters.

Selectivity at low coverage was calculated using the results of the single-site Langmuir fits of the experimental isotherms, by determining the Henry constants for each gas (Table S7 and S7) based on the equation:

$$H_i = \sum K_i V_i$$

The selectivity at zero pressure is then calculated with the relation:

$$S_{1,2} = \frac{H_1}{H_2}$$

Fig. S9 Adsorption isotherms of CO₂, CH₄ and N₂ recorded at 298 K for compound Mn-Ac. Solid lines represent fitting curves using a single-site Langmuir model.

Fig. S10 Adsorption isotherms of CO₂, CH₄ and N₂ recorded at 298 K for compound Co-DMA. Solid lines represent fitting curves using a single-site Langmuir model.

Table S6. Summary of the gas uptake at 298 K under 1 atm for the two MOFs Mn-Ac and Co-DMA.

	CO ₂ cm ³ g ⁻¹	CH ₄ cm ³ g ⁻¹	${m_2 \atop cm^3 g^{-1}}$
Mn-Ac	20.37	8.14	1.43
Co-DMA	41.18	1.44	1.45

Table S7. Fit parameters for the CO₂ and CH₄ isotherms of compound Mn-Ac at 298 K and selectivity.

Mn-Ac	CO ₂	CH ₄	N_2	CO ₂ /CH ₄ selectivity ^c	CO ₂ /N ₂ selectivity ^c
V_i^a	40.90	259.39	3.12	47	15.1
<i>K</i> _i ^b	0.978	0.03	0.85		10.1

^a Saturation uptakes and ^b affinity constants estimated from a single Langmuir site model; ^c Selectivity estimated from the ratio of the Henry constant (= ratio of the initial slopes) at 298 K.

Table S8. Fit parameters for the CO₂ and CH₄ isotherms of compound Co-DMA at 298 K and selectivity.

Со-ДМА	CO ₂	CH ₄	N_2	CO ₂ /CH ₄ selectivity ^c	CO ₂ /N ₂ selectivity ^c
Vi ^a	85.39	4.37	11.64	30.8	48.7
K _i ^b	0.929	0.589	0.14		

^a Saturation uptakes and ^b affinity constants estimated from a single Langmuir site model; ^c Selectivity estimated from the ratio of the Henry constant (= ratio of the initial slopes) at 298 K.

Fig. S11 The PXRD patterns of Mn-Ac after samples are soaked in aqueous, acidic or basic solutions for 1 h and under air condition at room temperature.

Fig. S12 The PXRD patterns of Co-DMA after samples are soaked in aqueous, acidic or basic solutions for 1 h and under air condition at room temperature.

Fig. S13 The temperature dependence of χ_m curves for Mn-Ac (a) and Co-DMA (b) under a static field of 1000 Oe.

Fig. S14 Geometrical model of complex Mn-Ac.

Equation.

Theoretical expression for χ_m derived from van Vleck equation with the simplified Heisenberg Hamiltonian. The equation (1) is used for the analysis of complexe **Mn-Ac**.

 $\chi_{m}T = 0.125 \times p1 \times p1 \times [52.5 \times exp(8.75 \times p2/x) + 15 \times exp(1.75 \times p2/x + 2 \times p3/x) + 52.5 \times exp(6.75 \times p2/x + 2 \times p3/x) + 126 \times exp(9.75 \times p2/x + 6 \times p3/x) + 15 \times exp(-2.25 \times p2/x + 6 \times p3/x) + 52.5 \times exp(2.75 \times p2/x + 6 \times p3/x) + 126 \times exp(9.75 \times p2/x + 6 \times p3/x) + 126 \times exp(9.75 \times p2/x + 6 \times p3/x) + 15 \times exp(-11.25 \times p2/x + 12 \times p3/x) + 15 \times exp(-8.25 \times p2/x + 12 \times p3/x) + 52.5 \times exp(-3.25 \times p2/x + 12 \times p3/x) + 126 \times exp(3.75 \times p2/x + 12 \times p3/x) + 126 \times exp(-14.25 \times p2/x + 12 \times p3/x) + 15 \times exp(-16.25 \times p2/x + 20 \times p3/x) + 52.5 \times exp(-11.25 \times p2/x + 20 \times p3/x) + 126 \times exp(-4.25 \times p2/x + 20 \times p3/x) + 247.5 \times exp(-4.25 \times p2/x + 20 \times p3/x) + 126 \times exp(-14.25 \times p2/x + 20 \times p3/x) + 126 \times exp(-4.25 \times p2/x + 20 \times p3/x) + 126 \times exp(-14.25 \times p2/x + 20 \times p3/x) + 126 \times exp(-2.25 \times p2/x + 20 \times p3/x) + 52.5 \times exp(-21.25 \times p2/x + 30 \times p3/x) + 126 \times exp(-14.25 \times p2/x + 20 \times p3/x) + 52.5 \times exp(-21.25 \times p2/x + 30 \times p3/x) + 126 \times exp(-14.25 \times p2/x + 30 \times p3/x) + 247.5 \times exp(-5.25 \times p2/x + 30 \times p3/x) + 682.5 \times exp(-21.25 \times p2/x + 30 \times p3/x) + 126 \times exp(-14.25 \times p2/x + 30 \times p3/x) + 247.5 \times exp(-5.25 \times p2/x + 30 \times p3/x) + 682.5 \times exp(-21.25 \times p2/x + 30 \times p3/x) + 1020 \times exp(3.75 \times p2/x + 30 \times p3/x) = 0 \times exp(-5.25 \times p2/x + 20 \times p3/x) + 6 \times exp(-1.75 \times p2/x + 20 \times p3/x) + 10 \times exp(-5.25 \times p2/x + 20 \times p3/x) + 6 \times exp(-1.75 \times p2/x + 20 \times p3/x) + 10 \times exp(-12.5 \times p2/x + 20 \times p3/x) + 10 \times exp(-12.5 \times p2/x + 12 \times p3/x) + 10 \times exp(-12.5 \times p2/x + 12 \times p3/x) + 10 \times exp(-12.5 \times p2/x + 12 \times p3/x) + 10 \times exp(-12.5 \times p2/x + 12 \times p3/x) + 10 \times exp(-12.5 \times p2/x + 12 \times p3/x) + 10 \times exp(-16.25 \times p2/x + 12 \times p3/x) + 10 \times exp(-12.5 \times p2/x + 12 \times p3/x) + 10 \times exp(-16.25 \times p2/x + 12 \times p3/x) + 10 \times exp(-16.25 \times p2/x + 12 \times p3/x) + 10 \times exp(-11.25 \times p2/x + 12 \times p3/x) + 10 \times exp(-14.25 \times p2/x + 12 \times p3/x) + 10 \times exp(-15.25 \times p2/x + 12 \times p3/x) + 10 \times exp(-16.25 \times p2/x + 12 \times p3/x) + 10 \times exp(-16.25 \times p2/x + 20 \times p3/x) + 10 \times exp(-16.25 \times p2/x + 30 \times p3/x) + 10 \times exp(-16.25 \times p2/x + 30 \times p3/x) + 10 \times exp(-16.25 \times p2/x + 30 \times p3/x) + 10 \times exp(-16.25 \times$

Fig. S15 The field dependence of magnetization curves for Mn-Ac (a) and Co-DMA (b) at 2 K.

References

(1) (a) G. M. Sheldrick. SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen (Germany), 1997;
(b) G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen (Germany), 1997; (c) G. M. Sheldrick. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.