Supporting Information

Role of Alkyl Chain Length in Diaminoalkane Linked 2D Ruddlesden-Popper Halide Perovskites

Zhibo Yao¹, Yi Zhou¹, Xuewen Yin¹, Xin Li¹, Jianhua Han¹, Meiqian Tai¹, Yu Zhou¹, Jianbao Li^{2,1}, Feng Hao^{3*} and Hong Lin^{1*}

¹ State Key Laboratory of New Ceramics & Fine Processing, School of Material Science and Engineering, Tsinghua University, Beijing 100084, PR China

² State Key Laboratory of Marine Resource Utilization in South China Sea, Materials and Chemical Engineering Institute, Hainan University, Haikou 570228, China

³ School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China

Corresponding Author

*E-mail:

hong-lin@tsinghua.edu.cn

haofeng@uestc.edu.cn

Figure S1. XRD patterns of (a) **DAB** samples synthesized with DAB added by 0.5, 0.75, 1, 1.25 times of the stoichiometric amount of $DAB(MA)_2Pb_3I_{10}$ and (b) **DAT** samples synthesized with DAT added by 0.125, 0.25, 0.375, 0.5 and 0.625 times of the stoichiometric amount of $DAT(MA)_2Pb_3I_{10}$.

Figure S2. XRD patterns of BA and DAX films (a) without annealing and (b) after annealing.

Figure S3. PL spectra of 3D, DAT, and BA films.

Table S1. Crystal data and calculated interplanar spacing for orthorhombic MAPbI₃ and $(BA)_2(MA)_{n-1}Pb_nI_{3n+1}$ (" \times " means which crystal plane was not mentioned or detected in the ref.)

Empirical formula	n=∞	n=1	n=2	n=3	n=4	n=5
(020), Å	\times	13.78	19.68	25.98	32.19	38.50
(040), Å	\times	6.89	9.84	12.99	16.10	19.25
(060), Å	\times	4.60	6.56	8.66	10.73	12.84
(080), Å	\times	3.45	4.92	6.50	8.05	9.63
(0100), Å	\times	\times	\times	5.20	6.44	7.70
(101), Å	\times	\times	6.25	6.25	6.25	6.26
(202), Å	\times	\times	3.17	3.17	3.17	3.17
(222), Å	\times	\times	3.13	\times	\times	\times
(110), Å	6.26	\times	\times	\times	\times	\times
(220), Å	3.18	\times	\times	\times	\times	\times

a, Å	8.84	8.86	8.95	8.93	8.93	8.91
b, Å	8.55	27.57	39.35	51.96	64.38	77.01
c, Å	12.58	8.68	8.86	8.88	8.88	8.93
$\begin{array}{c} \alpha = \beta = \gamma , \\ deg \end{array}$	90°	90°	90°	90°	90°	90°
ref	1	2	3	3	3	4

Table S2. Summarized XRD peak information for as-made 2D **DAX** (the peak in **red** color could be aligned to the (0k0) 2D perovskite characteristic peak, and the peak in **purple** color could be aligned to the typical perovskite characteristic peaks of (101), (222) and (202))

	2.11	
2 Theta, °	d, Å	Intensity, %
3.481	25.3627	24.7
6.981	12.6526	19.5
10.482	8.4325	28.3
14.001	6.3203	100
14.092	6.28	85
17.482	5.0687	2.6
28.221	3.1596	46.5
28.42	3.1379	21.5

D	A	Т

2 Theta, °	d, Å	Intensity, %
7.879	11.2119	94
9.202	9.6021	100
11.999	7.3697	40.4
13.999	6.3211	29.9
14.3	6.1886	22.2
14.94	5.925	76.8
15.677	5.6479	19.9
28.12	3.1707	21

DAB

2 Theta, °	d, Å	Intensity, %
8.74	10.1095	55.3
12.598	7.0206	25.5
14.14	6.2582	73.8
14.678	6.0299	21.2
15.72	5.6328	11.7
24.599	3.6159	35
26.219	3.3962	22.4
28.2	3.1619	100

2 Theta, °	d, Å	Intensity, %
8.199	10.7751	17.2
8.961	9.8605	26.5

12.76	6.9320	9.8
14.22	6.2231	38
24.663	3.6067	100
25.2	3.5311	31.3
28.382	3.1421	32
28.621	3.1163	43.9

Reference:

- 1. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel and T. J. White, *Journal of Materials Chemistry A*, 2013, **1**, 5628.
- 2. D. B. Mitzi, Chem. Mater., 1996, 8, 791-800.
- 3. C. C. Stoumpos, D. H. Cao, D. J. Clark, J. Young, J. M. Rondinelli, J. I. Jang, J. T. Hupp and M. G. Kanatzidis, *Chem. Mater.*, 2016, **28**, 2852-2867.
- 4. C. C. Stoumpos, C. M. M. Soe, H. Tsai, W. Nie, J.-C. Blancon, D. H. Cao, F. Liu, B. Traoré, C. Katan, J. Even, A. D. Mohite and M. G. Kanatzidis, *Chem*, 2017, **2**, 427-440.