Electronic Supplementary Information

Molten salt-assisted *a*-axis oriented growth of Ta_3N_5 nanorod array with enhanced charge transport for efficient photoelectrochemical water oxidation

Zhan Shi,^{a,c} Zhe Xu,^{a,b} Jianyong Feng,^{a,b} Huiting Huang,^{a,b} Qinfeng Qian,^{a,b} Shicheng Yan^{*a,b} and Zhigang Zou^{a,b,c}

^aCollaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China. E-mail: yscfei@nju.edu.cn

^bEco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Science, Nanjing University, Nanjing 210093, P. R. China.

^cJiangsu Key Laboratory For Nano Technology, Department of Physics, Nanjing University, Nanjing, 210093, P. R. China.

Fig. S1 a) SEM image of the pre-oxidized Ta foil. b) SEM image of NR powder fabricated by Ta_2O_5 powder and KI flux.

Fig. S2 XRD patterns of the time-course experiment of the NR growth using 2 g KI flux.

Fig. S3 XPS spectra of **a)** Ta 4f **b)** N 1s **c)** K 2p **d)** I 3d of the as-synthesized photoanodes.

Fig. S4 SEM images of Ta_3N_5 photoanodes synthesized by using a) NaI and b) KBr as flux.

Fig. S5 Current density-potential curves of Ta_3N_5 -2 photoanodes with varied growth time. Ni_{0.9}Fe_{0.1}OOH was electrochemically deposited for 100 s as the co-catalyst for all the photoanodes.

Fig. S6 Stability test of Ta_3N_5 -2 photoanode with $Ni_{0.9}Fe_{0.1}OOH$. The stability of Ta_3N_5 -2 nanorod photoanode is not so good, which can be attributed to the surface corrosion by holes and leaky co-catalyst that does not prevent from the infiltration of electrolyte.

Fig. S7 a) Schematic diagram of conductivity measurement of Ta_3N_5 photoanodes. The area of Ga droplet is about 4 mm². b) J-V curves of the conductivity

measurement. For comparison, a planar nanoparticle Ta_3N_5 film of about 2 µm-thick was fabricated with simple oxidation-nitridation method. The linearly fitted conductivities at V=0 V for Ta_3N_5 nanoparticle film, Ta_3N_5 -1, Ta_3N_5 -1.5 and Ta_3N_5 -2 are 0.02, 3.61, 3.46, and 3.58 Ω^{-1} cm², respectively.