SUPPORTING INFORMATION

Incorporation of hexacyanidoferrate(III) ion in photoluminescent trimetallic Eu(3-pyridone)[Co_{1-x}Fe_x(CN)₆] chains exhibiting tunable visible light absorption and emission properties

Szymon Chorazy, *^a Jakub J. Zakrzewski,^a Junhao Wang,^b Shin-ichi Ohkoshi,^b and Barbara Sieklucka*^a

^aFaculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland. ^bDepartment of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. *Corresponding authors: chorazy@chemia.uj.edu.pl; barbara.sieklucka@uj.edu.pl Infrared absorption spectra of 1–10. (Figure S1) **S**2 Thermogravimetric curves of 1, 7, 8, and 10, together with the related comment. (Figure S2) **S**3 Crystal data and structure refinement for 1, 2, and 3. (Table S1) **S**4 Crystal data and structure refinement for 4, 5, and 6. (Table S2) **S**5 Crystal data and structure refinement for 7, 8, 9, and 10. (Table S3) **S**6 Comparison of the asymmetric units of **1–6** with the atoms labelling schemes. (Figure S3) **S**7 Comparison of the asymmetric units of 7-10 with the atoms labelling schemes. (Figure S4) **S**8 The supramolecular arrangement of the cvanido-bridged chains and crystallization water molecules of 8**S**9 presented along the crystallographic a, b, c axes, and the [101] direction. (Figure S5) Detailed structure parameters of 1, 2, and 3. (Table S4) S10 Detailed structure parameters of 4, 5, and 6. (Table S5) S11 Detailed structure parameters of 7, 8, 9, and 10. (Table S6) S12 Results of Continuous Shape Measure Analysis for [Eu^{III}(3-pyridone)₂(H₂O)₄(NC)₂]⁺ complexes in the crystal S13 structures of 1–10. (Table S7) Detailed interatomic distances of hydrogen bonds network of 1, 2, and 3. (Table S8) S13 Detailed interatomic distances of hydrogen bonds network of 4, 5, and 6. (Table S9) S14 Detailed interatomic distances of hydrogen bonds network of 7, 8, 9, and 10. (Table S10) S14 Experimental PXRD patterns of 1-10 compared with the respective patterns calculated from the structural S15 models obtained within the single crystal X-ray diffraction structural analyses. (Figure S6) Comparison of experimental powder X-ray diffraction patterns of 1-10 along with the enlargement S16 of the representative 2Θ range of 16–26°. (Figure S7) Solid-state UV-Vis-NIR absorption spectra of 1 and 10 compared with the reference spectra S17 of K₃[Co(CN)₆], K₃[Fe(CN)₆] and 3-pyridone. (Figure S8) Room temperature solid-state UV-Vis-NIR emission spectra of 1, 2, 3, 4, 3-pyridone, and $K_3[Co(CN)_6]$ **S18** at the indicated excitation wavelengths together with the related emission colours presented on the CIE 1931 chromaticity diagram. (Figure S9) Summary of xy parameters of the CIE 1931 chromaticity scale for the room temperature emission colours of 1, S19 **2**, **3**, **4**, 3-pyridone and $K_3[Co(CN)_6]$. (Table S11)

Emission spectra of **1** and the spectralon-made reference used in the calculations of emission quantum yield. S19 (Figure S10)

Emission decay promes of $I-7$ under $\lambda_{exc} = 550$ min and $\lambda_{em} = 018$ min. (Figure 3	S11) S20
--	----------

Detailed parameters of the fittings of the emission decay profiles of 1–7 to the mono-exponential (1) and S21 double-exponential (2–7) decay functions. (Table S12)

References to Supporting Information.

S22

Figure S1. Infrared absorption spectra of **1–10** in the range of 4000–700 cm⁻¹ (*a*), and the limited range of 2180–2080 cm⁻¹, related to the stretching vibrations of cyanide ligands (*b*).^{S1}

Figure S2. Thermogravimetric curves of **1**, **7**, **8**, and **10** collected in the temperature range of 20–375 °C. The steps related to the loss of water molecules were depicted (see the comment below for details). The experiments were conducted under an air atmosphere with the heating rate of 1 °C per minute.

Comment to Figure S2

Upon heating under an air atmosphere, the powder samples of 1, 7, 8, and 10 show the stable composition up to ca. 80–90 °C. Among these compounds, Eu/Fe-containing 10 reveals the lowest thermal stability up to 80 °C, while the highest thermal stability to almost 90 °C is characteristic of Eu/Co-containing 1. The mixed Eu/Co/Fe compounds, 7 and 8 exhibit the intermediate thermal stability to ca. 83–86 °C. Further heating leads to the significant and rapid decrease of the mass of the samples in the relatively narrow range of 90–120 °C. The related decreases of the mass are similar in all the investigated compounds, 10.5% for 1, 10.6% for 7 and 8, up to 11.1% for 10. These values correspond well to the mass loss of 11.1-11.2% expected for the removal of four water molecules per one {EuM} (M = Co, Fe) unit. It indicates that, at ca. 120 °C, 1, 7, 8, and 10 undergo the phase transition to the partially dehydrated { $[Eu^{III}(3-pyridone)_2(H_2O)][M^{III}(CN)_6]$ } (Ln = Co, Fe) form with a small amount of remaining water molecules. This last portion of water is gradually removing on further heating in the much broader temperature range from 120 °C to 190-200 °C. Thus, at ca. 200 °C all the samples are expected to reach the fully dehydrated form of $\{[Eu^{III}(3-pyridone)_2][M^{III}(CN)_6]\}$ (Ln = Co, Fe). At higher temperatures, the further decrease of the mass is observed, and it can be ascribed to the removal of terminal cyanides and/or gradual decomposition of 3-pyridone ligands.^{S2} The related dramatic decrease of the sample's mass is observed below 240, 260, 270, and 300 °C for 1, 7, 8, and 10, respectively. It shows the highest thermal stability for Eu/Co-containing 1, and the decrease of thermal stability occurring with the increasing amount of Fe^{III} within the coordination network.

Cor	npound	1	2	3
fo	formula $Eu_1Co_1C_{16}H_{20}N_8O_7$ $Eu_1Co_{0.97}Fe_{0.03}C_{16}H_{20}N_8O_7$		$Eu_1Co_{0.97}Fe_{0.03}C_{16}H_{20}N_8O_7$	$Eu_1Co_{0.94}Fe_{0.06}C_{16}H_{20}N_8O_7$
formula w	eight / g·mol ⁻¹	647.29	647.29 647.2	
1	Г / К		298(2)	
)	l / Å		0.71073	
cryst	al system		monoclinic	
spac	ce group		<i>C</i> 2/c (no. 15)	
	<i>a</i> / Å	15.9157(5)	15.869(4)	15.922(3)
unit cell	<i>b</i> / Å	9.2572(3)	9.274(3)	9.2557(15)
unit cen	<i>c</i> / Å	17.7350(6)	17.720(7)	17.732(3)
	eta / deg	116.5470(10)	116.259(10)	116.446(6)
volu	ıme / Å ³	2337.49(13)	2338.50(13)	2339.7(7)
	Ζ	4	4	4
calculated of	density / $g \cdot cm^{-3}$	1.839	1.838	1.837
absorption coefficient / cm ⁻¹		3.421	3.417	3.412
F(000)		1272	1272	1272
crystal size / mm × mm × mm		0.22 × 0.14 × 0.06	0.34 × 0.30 × 0.30	$0.17 \times 0.15 \times 0.11$
crys	stal type	colourless block	yellow block	orange block
Θ rat	nge / deg	2.568-28.796	2.563-26.018	2.566-26.731
limiting indices		-21 < h < 21 -12 < k < 12 -23 < l < 23	-19 < h < 19 -11 < k < 6 -21 < l < 16	-20 < h < 16 -11 < k < 11 -22 < l < 22
collected	d reflections	14042	4046	8078
unique	reflections	3036	2294	2492
	R _{int}	0.0223	0.0135	0.0215
com	oleteness	0.995	0.994	1.000
max. trans	and min. smission	0.520 and 0.821	0.39 and 0.427	0.595 and 0.705
data/restrai	ints/parameters	3036/5/182	2294/5/182	2492/5/182
GO	F on F^2	1.243	1.348	1.028
final	R indices	$R_1 = 0.0168 [I > 2\sigma(I)]$ $wR_2 = 0.0503$ (all data)	$R_1 = 0.0271 [I > 2\sigma(I)]$ $wR_2 = 0.0751$ (all data)	$R_1 = 0.0172 [I > 2\sigma(I)]$ $wR_2 = 0.043$ (all data)
largest pea	diffraction ak/hole	0.548/-1.012 e·Å ⁻³	0.68/-2.389 e·Å ⁻³	0.353/-0.757 e·Å ⁻³

Table S1. Crystal data and structure refinement for 1, 2, and 3.

Cor	npound	4	5	6
fo	rmula	$Eu_1Co_{0.91}Fe_{0.09}C_{16}H_{20}N_8O_7$	$Eu_1Co_{0.88}Fe_{0.12}C_{16}H_{20}N_8O_7$	$Eu_1Co_{0.85}Fe_{0.15}C_{16}H_{20}N_8O_7$
formula w	eight / g·mol ⁻¹	647.01	646.92	646.83
7	Г / К		298(2)	
7	l / Å		0.71073	
crysta	al system		monoclinic	
spac	e group		<i>C</i> 2/c (no. 15)	
	<i>a</i> / Å	15.907(3)	15.9056(18)	15.9088(10)
unit coll	<i>b</i> / Å	9.268(2)	9.2580(11)	9.2677(6)
unit cen	<i>c</i> / Å	17.718(4)	17.746(2)	17.7418(16)
	β / deg	116.505(4)	116.540(4)	116.514(2)
volu	me / Å ³	2337.4(9)	2337.8(5)	2340.7(3)
	Ζ	4	4	4
calculated of	density / $g \cdot cm^{-3}$	1.839	1.838	1.835
absorption coefficient / cm ⁻¹		3.413	3.410	3.403
F(000)		1272	1272 1271	
crystal size / mm × mm × mm		$0.19 \times 0.18 \times 0.07$	$0.24 \times 0.15 \times 0.09$	$0.18 \times 0.12 \times 0.04$
crys	stal type	orange block	orange block	orange block
Θ rat	nge / deg	2.622-25.027	2.566-27.103	2.566-27.103
limiting indices		-18 < h < 18 -10 < k < 11 -19 < l < 21	-20 < h < 20 -11 < k < 11 -22 < l < 22	-20 < h < 20 -11 < k < 11 -22 < l < 22
collecter	d reflections	4999	12942	12873
unique	reflections	2004	2583	2586
unique	Rint	0.0165	0.0265	0.0284
comr	oleteness	0.976	1.000	1.000
max. trans	and min. smission	0.563 and 0.796	0.495 and 0.749	0.579 and 0.876
data/restrai	nts/parameters	2004/5/182	2583/5/182	2586/5/182
GO	F on F^2	1.026	1.013	1.100
final	R indices	$R_1 = 0.0155 [I > 2\sigma(I)]$ $wR_2 = 0.0394$ (all data)	$R_1 = 0.0157 [I > 2\sigma(I)]$ $wR_2 = 0.039$ (all data)	$R_1 = 0.017 [I > 2\sigma(I)]$ $wR_2 = 0.0438$ (all data)
largest pea	diffraction ak/hole	0.395/-0.488 e·Å ⁻³	0.409/-0.535 e [.] Å ⁻³	0.332/-0.646 e·Å ⁻³

Table S2. Crystal data and structure refinement for 4, 5, and 6.

Com	pound	7	8	9	10
formula		$\begin{array}{c} Eu_1Co_{0.25}Fe_{0.75}C_{16}H_{20}\\ N_8O_7 \end{array}$	$\frac{Eu_{1}Co_{0.5}Fe_{0.5}C_{16}H_{20}}{N_{8}O_{7}}$	$\begin{array}{c}Eu_{1}Co_{0.25}Fe_{0.75}C_{16}H_{20}\\N_{8}O_{7}\end{array}$	$\begin{array}{c} Eu_{1}Fe_{1}C_{16}H_{20}\\ N_{8}O_{7}\end{array}$
formula g·n	weight / nol ⁻¹	646.52	645.75	644.98	644.21
T	/ K		298(2)	
λ,	/ Å		0.7107	73	
crystal	system		monocli	nic	
space	group		<i>C</i> 2/c (no	. 15)	
	<i>a</i> / Å	15.9161(15)	15.9139(7)	15.914(2)	15.9155(18)
	<i>b</i> / Å	9.2678(8)	9.2609(4)	9.2658(11)	9.2628(11)
unit cell	<i>c</i> / Å	17.7480(16)	17.7694(8)	17.800(2)	17.822(2)
	β / deg	116.527(3)	116.4190(10)	116.489(5)	116.366(3)
volun	ne / Å ³	2342.3(4)	2345.30(18)	2349.1(5)	2354.1(5)
	Ζ	4	4	4	4
calculate g·c	d density / cm ⁻³	1.833	1.829	1.824	1.818
absorption / c	coefficient	3.392	3.365	3.338	3.308
F(000)		1271	1270	1269	1268
crystal size / mm × mm × mm		0.19 × 0.10 × 0.08	0.13 × 0.09 × 0.08	0.16 × 0.13 × 0.08	0.18 × 0.14 × 0.09
crysta	al type	orange block	orange block	orange block	red block
Θ rang	ge / deg	2.622-27.144	2.623-27.176	2.557-27.103	2.551-27.225
		-20 < h < 20	-20 < h < 20	-20 < <i>h</i> < 17	-20 < h < 20
limiting	g indices	-11 < <i>k</i> < 11	-11 < <i>k</i> < 11	-11 < <i>k</i> < 9	-11 < <i>k</i> < 11
		-22 < l < 22	-22 < l < 22	-22 < l < 22	-22 < l < 22
collected	reflections	12812	12941	6244	12892
unique r	eflections	2588	2604	2588	2612
K	R _{int}	0.0244	0.0221	0.0204	0.0218
compl	eteness	0.997	0.998	0.996	0.994
max. a transn	nd min. nission	0.563 and 0.773	0.669 and 0.775	0.617 and 0.776	0.587 and 0.755
data/re parar	straints/ neters	2588/5/182	2604/5/182	2588/5/182	2612/10/182
GOF	on F^2	1.094	1.117	1.070	1.475
final R	indices	$R_{1} = 0.0150 [I > 2\sigma(I)]$ wR_{2} = 0.0351 (all data)	$R_{1} = 0.0156$ [<i>I</i> >2 σ (<i>I</i>)] <i>wR</i> ₂ = 0.0377 (all data)	$R_{1} = 0.0193 [I > 2\sigma(I)]$ wR_{2} = 0.0465 (all data)	$R_{1} = 0.0181$ [I>2 σ (I)] wR_{2} = 0.1044 (all data)
largest d peak	iffraction /hole	$0.370/-0.526 \text{ e} \cdot \text{\AA}^{-3}$	0.320/-0.656 e·Å ⁻³	0.366/-0.728 e·Å ⁻³	1.003/-2.301 e·Å ⁻³

Table S3. Crystal data and structure refinement for 7, 8, 9, and 10.

Figure S3. Comparison of the asymmetric units of **1–6** with the atoms labelling schemes. Thermal ellipsoids are presented at the 70% probability level. The related bond lengths and angles are collected in Tables S1–S2.

Figure S4. Comparison of the asymmetric units of **7–10** with the atoms labelling schemes. Thermal ellipsoids are presented at the 70% probability level. The related bond lengths and angles are collected in Table S3.

Figure S5. The supramolecular arrangement of the cyanido-bridged chains and crystallization water molecules of 8 presented along the crystallographic a axis (a), b axis (b), c axis (c), and the [101] direction (d). One representative chain was shown using black colour.

Details of [M ^{III} (CN) ₆] ³⁻ complexes				
Parameter	1 (M = Co)	$2 (M = Co_{0.97}Fe_{0.03})$	$3 (M = Co_{0.94}Fe_{0.06})$	
M1-C1	1.900(2) Å	1.910(4) Å	1.903(2) Å	
M1-C2	1.905(2) Å	1.902(3) Å	1.910(2) Å	
M1-C3	1.8988(19) Å	1.897(3) Å	1.901(2) Å	
C1-N1	1.138(3) Å	1.134(5) Å	1.135(3) Å	
C2-N2	1.142(3) Å	1.143(5) Å	1.149(3) Å	
C3–N3	1.144(3) Å	1.147(4) Å	1.145(3) Å	
M1C1N1	178.3(3)°	178.5(4)°	178.2(3)°	
M1C2N2	177.8(2)°	178.0(3)°	178.1(2)°	
M1-C3-N3	177.17(18)°	177.3(3)°	177.4(2)°	
C1-M1-C2	89.39(9)°	89.56(15)°	89.39(10)°	
C1-M1-C3	89.67(9)°	89.49(14)°	89.72(9)°	
C2-M1-C3	89.23(8)°	89.49(14)°	89.16(9)°	
M1-Eu1 distance	5.444 Å	5.444 Å	5.443 Å	
]	Details of [Eu ^{III} (3-pyridor	$(H_2O)_4(NC)_2]^+$ complete $(H_2O)_4(NC)_2$	exes	
Parameter	1 (M = Co)	$2 (M = Co_{0.97}Fe_{0.03})$	3 (M = $Co_{0.94}Fe_{0.06}$)	
Eu1–N3	2.5728(18) Å	2.573(3) Å	2.5697(19) Å	
Eu1–O1	2.4324(16) Å	2.429(3) Å	2.4312(18) Å	
Eu1–O2	2.4641(15) Å	2.466(2) Å	2.4639(17) Å	
Eu1–O3	2.2974(14) Å	2.295(2) Å	2.2997(16) Å	
Eu1–N3–C3	152.92(16)°	152.6(3)°	152.93(17)°	
Eu1–O3–C4	134.34(13)°	134.3(2)°	134.31(14)°	
N3-Eu1-N3	78.56(9)°	78.19(14)°	78.41(9)°	
O1–Eu1–O1	144.04(8)°	144.04(12)°	144.22(8)°	
O2–Eu1–O2	70.61(7)°	70.50(12)°	70.67(8)°	
O3–Eu1–O3	149.49(7)°	149.32(12)°	149.62(8)°	
N3–Eu1–O1	68.70(6)°	68.89(9)°	68.68(6)°	
	147.26(6)°	147.08(9)°	147.09(6)°	
N3–Eu1–O2	127.53(6)°	127.50(9)°	127.61(6)°	
	130.86(6)	131.22(9)	130.84(6)	
N3–Eu1–O3	75.28(6)°	75.42(9)°	75.29(6)° 81.24(6)°	
01, Eu1, 02	73 27(6)0	73 05(0)0	73 20(6)°	
01-Lu1-02	77.53(6)°	77.72(9)°	77.65(6)°	
01–Eu1–O3	90.52(6)°	90.83(10)°	90.59(7)°	
	98.82(6)°	98.56(10)°	98.67(7)°	
O2–Eu1–O3	70.31(5)°	70.45(8)°	70.20(6)°	
	140.04(5)°	140.06(8)°	140.02(6)°	

Table S4. Detailed structure parameters of 1, 2, and 3.

Details of $[M^{III}(CN)_6]^{3-}$ complexes				
Parameter	$4 (M = Co_{0.91}Fe_{0.09})$	5 (M = $Co_{0.88}Fe_{0.12}$)	6 (M = $Co_{0.85}Fe_{0.15}$)	
M1C1	1.904(2) Å	1.905(2) Å	1.907(2) Å	
M1-C2	1.911(2) Å	1.909(2) Å	1.914(2) Å	
M1-C3	1.901(2) Å	1.9045(19) Å	1.905(2) Å	
C1-N1	1.141(3) Å	1.138(3) Å	1.138(3) Å	
C2-N2	1.141(3) Å	1.143(3) Å	1.140(3) Å	
C3–N3	1.145(3) Å	1.147(3) Å	1.145(3) Å	
M1C1N1	178.7(3)°	178.3(2)°	178.4(3)°	
M1-C2-N2	178.1(2)°	178.1(2)°	178.1(2)°	
M1-C3-N3	177.3(2)°	177.15(18)°	177.3(2)°	
C1-M1-C2	89.36(10)°	89.42(9)°	89.30(10)°	
C1-M1-C3	89.50(9)°	89.67(8)°	89.62(9)°	
C2-M1-C3	89.28(9)°	89.24(8)°	89.19(9)°	
M1–Eu1 distance	5.443 Å	5.446 Å	5.447 Å	
E	Details of [Eu ^{III} (3-pyridon	$e_{2}(H_{2}O)_{4}(NC)_{2}]^{+}$ complete	exes	
Parameter	$4 (M = Co_{0.91}Fe_{0.09})$	5 (M = $Co_{0.88}Fe_{0.12}$)	6 (M = $Co_{0.85}Fe_{0.15}$)	
Eu1–N3	2.568(2) Å	2.5675(17) Å	2.5697(19) Å	
Eu1–O1	2.4276(19) Å	2.4291(15) Å	2.4301(17) Å	
Eu1–O2	2.4634(17) Å	2.4627(15) Å	2.4634(17) Å	
Eu1–O3	2.2970(16) Å	2.2958(14) Å	2.2996(16) Å	
Eu1–N3–C3	152.82(17)°	152.93(16)°	152.81(17)°	
Eu1–O3–C4	134.38(13)°	134.20(12)°	134.20(14)°	
N3-Eu1-N3	78.32(9)°	78.46(8)°	78.39(9)°	
O1–Eu1–O1	144.10(8)°	144.18(8)°	144.13(8)°	
O2–Eu1–O2	70.41(8)°	70.39(7)°	70.43(8)°	
O3–Eu1–O3	149.35(8)°	149.60(7)°	149.42(8)°	
N3-Eu1-O1	68.79(6)°	68.68(5)°	68.74(6)°	
	147.11(6)°	147.14(6)°	147.13(6)°	
N3–Eu1–O2	127.69(7)° 120.08(6)°	127.68(6)°	127.61(6)°	
N2 En1 02	75 28(6)	75 22(5)	75 27(6)9	
N3-Eu1-03	73.28(0) 81.04(6)°	73.32(3) 81.21(5)°	73.27(0) 81.11(6)°	
O1–Eu1–O2	73.27(6)°	73.35(6)°	73.26(6)°	
	77.54(7)°	77.52(6)°	77.58(6)°	
O1–Eu1–O3	90.69(7)°	90.51(6)°	90.54(6)°	
	98.68(7)°	98.77(6)°	98.80(6)°	
O2–Eu1–O3	70.46(6)°	70.35(5)°	70.43(6)°	
	140.03(6)	139.89(3)	139.98(0)	

Table S5. Detailed structure parameters of 4, 5, and 6.

Details of $[M^{III}(CN)_6]^{3-}$ complexes					
Parameter	7 (M = $Co_{0.75}Fe_{0.25}$)	8 (M = $Co_{0.5}Fe_{0.5}$)	9 (M = $Co_{0.25}Fe_{0.75}$)	10 (M = Fe)	
M1-C1	1.9100(19) Å	1.922(2) Å	1.932(3) Å	1.941(4) Å	
M1-C2	1.917(2) Å	1.925(2) Å	1.934(3) Å	1.940(4) Å	
M1-C3	1.9081(18) Å	1.9180(18) Å	1.927(2) Å	1.929(3) Å	
C1-N1	1.140(3) Å	1.133(3) Å	1.136(3) Å	1.125(6) Å	
C2–N2	1.145(3) Å	1.145(3) Å	1.145(3) Å	1.139(5) Å	
C3–N3	1.147(2) Å	1.144(2) Å	1.143(3) Å	1.146(5) Å	
M1C1N1	178.4(2)°	178.1(2)°	178.3(3)°	178.3(5)°	
M1C2N2	177.85(19)°	177.90(19)°	178.0(2)°	177.7(4)°	
M1-C3-N3	177.19(17)°	177.27(17)°	177.4(2)°	177.7(3)°	
C1-M1-C2	89.35(9)°	89.40(9)°	89.23(11)°	89.41(18)°	
C1-M1-C3	89.59(8)°	89.77(8)°	89.24(11)°	89.81(16)°	
C2-M1-C3	89.08(8)°	89.14(8)°	89.00(10)	88.94(15)°	
M1-Eu1 distance	5.447 Å	5.449 Å	5.455 Å	5.457 Å	
	Details of [Eu	^{III} (3-pyridone) ₂ (H ₂ O) ₄ (N	$(C)_2]^+$ complexes		
Parameter	7 (M = $Co_{0.75}Fe_{0.25}$)	8 (M = $Co_{0.5}Fe_{0.5}$)	9 (M = $Co_{0.25}Fe_{0.75}$)	10 (M = Fe)	
Eu1–N3	2.5657(16) Å	2.5620(16) Å	2.563(2) Å	2.561(4) Å	
Eu1–O1	2.4273(15) Å	2.4273(15) Å	2.4278(18) Å	2.434(3) Å	
Eu1–O2	2.4633(14) Å	2.4615(15) Å	2.4636(18) Å	2.467(3) Å	
Eu1–O3	2.2988(13) Å	2.2963(13) Å	2.2986(17) Å	2.304(3) Å	
Eu1–N3–C3	152.82(15)°	152.66(15)°	152.35(19)°	152.3(3)°	
Eu1O3C4	134.26(11)°	134.29(12)°	134.10(15)°	134.1(3)°	
N3–Eu1–N3	78.33(8)°	78.29(8)°	78.19(10)°	78.14(16)°	
O1–Eu1–O1	144.11(7)°	144.32(7)°	144.31(9)°	144.55(14)°	
O2–Eu1–O2	70.36(7)°	70.40(7)°	70.26(9)	70.21(13)°	
O3–Eu1–O3	149.55(7)°	149.70(7)°	149.79(9)°	149.77(14)°	
N3-Eu1-O1	68.78(5)°	68.70(5)°	68.75(7)°	68.65(11)°	
	147.11(5)°	146.98(5)°	146.94(7)°	146.80(11)°	
N3–Eu1–O2	127.70(5)° 130.99(5)°	127.67(5)° 131.02(5)°	127.80(7)° 131.04(7)°	127.71(11)° 131.19(11)°	
N3–Eu1–O3	75.24(5)°	75.37(5)°	75.37(7)°	75.37(11)°	
	81.23(5)°	81.21(5)°	81.26(7)°	81.24(11)°	
O1–Eu1–O2	73.27(5)°	73.33(6)°	73.42(7)°	73.40(11)°	
	77.54(5)°	77.66(5)°	77.54(7)°	77.74(11)°	
O1–Eu1–O3	90.48(5)°	90.52(6)°	90.40(7)°	90.32(12)°	
	98.82(5)°	98.69(6)°	98.79(7)°	98.81(12)°	
O2–Eu1–O3	70.40(5)° 139.88(5)°	70.30(5)° 139.83(5)°	70.32(6)° 139.73(6)°	70.37(10)° 139.68(10)°	

Table S6. Detailed structure parameters of 7, 8, 9 and 10.

Table S7. Results of Continuous Shape Measure Analysis for $[Eu^{III}(3-pyridone)_2(H_2O)_4(NC)_2]^+$ complexes in the crystal structures of **1–10**.

Compound		Coometry		
Compound	BTP-8	SAPR-8	DD-8	Geometry
1	2.479	2.367	0.601	DD-8
2	2.468	2.374	0.590	DD-8
3	2.485	2.388	0.599	DD-8
4	2.471	2.381	0.586	DD-8
5	2.473	2.376	0.602	DD-8
6	2.463	2.358	0.594	DD-8
7	2.460	2.360	0.597	DD-8
8	2.465	2.372	0.601	DD-8
9	2.452	2.361	0.602	DD-8
10	2.437	2.337	0.606	DD-8

* CSM parameters:^{S3}

CSM BTP-8 = the parameter related to the bicapped trigonal prism geometry (C_{2v} symmetry)

CSM SAPR-8 = the parameter related to the square antiprism (D_{4d} symmetry)

CSM DD-8 = the parameter related to the dodecahedron (D_{2d} symmetry)

CSM = 0 for the ideal geometry and the increase of CSM parameter corresponds to the increasing distortion from ideal polyhedron.

Table S8. Detailed interatomic distances of hydrogen bonds network of 1, 2, and 3.

Hydrogen bonds	1	2	3
interchain O3-(H4)-N4	2.859 Å	2.857 Å	2.858 Å
interchain O2-(H2B)-N2	2.831 Å	2.835 Å	2.829 Å
interchain O1-(H1A)-N1	3.386 Å	3.387 Å	3.386 Å
intrachain O1-(H1B)-N1	2.747 Å	2.752 Å	2.749 Å
chain to crystallization water O2-(H2A)-O4	2.835 Å	2.841 Å	2.836 Å
chain to crystallization water O4-(H4A)-N3	3.242 Å	3.239 Å	3.239 Å

Hydrogen bonds	4	5	6
interchain O3-(H4)-N4	2.865 Å	2.859 Å	2.859 Å
interchain O2-(H2B)-N2	2.829 Å	2.829 Å	2.829 Å
interchain O1-(H1A)-N1	3.387 Å	3.390 Å	3.390 Å
intrachain O1-(H1B)-N1	2.749 Å	2.748 Å	2.750 Å
chain to crystallization water O2-(H2A)-O4	2.835 Å	2.834 Å	2.835 Å
chain to crystallization water O4-(H4A)-N3	3.245 Å	3.240 Å	3.246 Å

 Table S9. Detailed interatomic distances of hydrogen bonds network of 4, 5 and 6.

Table S10. Detailed interatomic distances of hydrogen bonds network of 7, 8, 9 and 10.

Hydrogen bonds	7	8	9	10
interchain O3-(H4)-N4	2.857 Å	2.855 Å	2.851 Å	2.848 Å
interchain O2-(H2B)-N2	2.826 Å	2.829 Å	2.821 Å	2.831 Å
interchain O1-(H1A)-N1	3.392 Å	3.392 Å	3.400 Å	3.393 Å
intrachain O1-(H1B)-N1	2.750 Å	2.746 Å	2.741 Å	2.747 Å
chain to crystallization water O2-(H2A)-O4	2.836 Å	2.837 Å	2.836 Å	2.841 Å
chain to crystallization water O4-(H4A)-N3	3.244 Å	3.238 Å	3.237 Å	3.227 Å

Figure S6. Experimental PXRD patterns of **1–10** compared with the respective patterns calculated from the structural models obtained within the single crystal X-ray diffraction (SC-XRD) structural analyses.

Figure S7. Comparison of experimental powder X-ray diffraction patterns of 1-10 (*a*) along with the enlargement of the representative 2Θ range of $16-26^{\circ}$ (*b*).

Figure S8. Solid-state UV-Vis-NIR absorption spectra of **1** (*a*) and **10** (*b*) compared with the reference spectra of $K_3[Co(CN)_6]$, 3-pyridone (*a*), and $K_3[Fe(CN)_6]$, 3-pyridone (*b*).

Figure S9. Room temperature solid-state UV-Vis-NIR emission spectra of **1** (*a*), **2** (*b*), **3** (*c*), **4** (*d*), 3-pyridone (*e*), and $K_3[Co(CN)_6](f)$ at the indicated excitation wavelengths together with the related emission colours presented on the CIE 1931 chromaticity diagram (*g*).

Table S11. Summary of *xy* parameters of the CIE 1931 chromaticity scale for the room temperature emission colours of **1**, **2**, **3**, **4**, 3-pyridone, and $K_3[Co(CN)_6]$.

Compound	λ_{exc} / nm	X	У	colour
1	330	0.656	0.334	red
2	330	0.645	0.333	red
3	330	0.633	0.333	red
4	330	0.621	0.333	red
3-pyridone	338	0.312	0.441	green
$K_3[Co(CN)_6]$	328	0.654	0.337	red

Figure S10. Emission spectra of **1** and the spectralon-made reference used in the calculations of emission quantum yield. The experimental parameters used in the quantum yield determination: excitation wavelength, 330 nm; excitation slit, 5 nm, emission slit, 0.4 nm.

Figure S11. Emission decay profiles of **1** (*a*), **2** (*b*), **3** (*c*), **4** (*d*), **5** (*e*), **6** (*f*), and **7** (*g*) under $\lambda_{\text{exc}} = 330$ nm and $\lambda_{\text{em}} = 618$ nm. The black points represent the experimental data while the red lines show the fitting using the mono-exponential (*a*) or double-exponential (*b*-*g*) decay functions. The resulting emission lifetimes are depicted on the graphs. The detailed parameters, and the related equations are collected in Table S9.

Table S12. Detailed parameters of the fittings of the emission decay profiles of 1–7 to the mono-exponential (1) and double-exponential (2–7) decay functions.

compound	$ au_1$ / μs	$ au_2$ / μs	B_1	B_2	relative intensity of component 1	relative intensity of component 2	χ^2 of the fitting
1	166.7(2)	-	4407(5)	-	100%	-	1.068
2	135.6(5)	58(3)	3273(44)	811(40)	90.4%	9.6%	0.992
3	114.5(6)	52.9(14)	2826(57)	1545(53)	79.8%	20.2%	1.004
4	105.6(8)	49.3(11)	1992(56)	1740(52)	71.0%	29.0%	1.009
5	86.4(9)	40.6(10)	1677(62)	1694(58)	67.8%	32.2%	0.996
6	77.2(8)	36.2(8)	891(34)	1004(32)	65.4%	34.6%	1.018
7	47(6)	27.5(16)	57(2)	114(4)	45.9%	54.1%	0.985

Mono-exponential decay function used for the fitting of the emission versus time curve for 1:

Emission intensity at 618 nm (time, t) = $B_1 \cdot \exp(-t/\tau_1)$

where τ_1 = emission lifetime.

Double-exponential decay function used for the fitting of the emission versus time curves for 2–7:

Emission intensity at 618 nm (time, t) = $B_1 \cdot \exp(-t/\tau_1) + B_2 \cdot \exp(-t/\tau_2)$

where τ_1 = first component emission lifetime; τ_2 = second component emission lifetime.

References to Supporting Information

- [S1] (a) P. Przychodzeń, T. Korzeniak, R. Podgajny and B. Sieklucka, *Coord. Chem. Rev.*, 2006, 250, 2234;
 (b) H. Tokoro, K. Nakagawa, K. Imoto, F. Hakoe and S. Ohkoshi, *Chem. Mater.*, 2012, 24, 1324.
- [S2] (a) S. Chorazy, K. Nakabayashi, M. Arczyński, R. Pełka, S. Ohkoshi and B. Sieklucka, *Chem. Eur. J.*, 2014, 20, 7144; (b) S. Chorazy, M. Rams, M. Wyczesany, K. Nakabayashi, S. Ohkoshi and B. Sieklucka, *CrystEngComm*, 2018, 20, 1271.
- [S3] (a) M. Llunell, D. Casanova, J. Cirera, J. Bofill, P. Alemany, S. Alvarez, M. Pinsky, D. Avnir, SHAPE v. 2.1.
 Program for the Calculation of Continuous Shape Measures of Polygonal and Polyhedral Molecular
 Fragments, University of Barcelona: Barcelona, Spain, 2013; (b) D. Casanova, J. Cirera, M. Llunell, P.
 Alemany, D. Avnir and S. Alvarez, J. Am. Chem. Soc., 2004, 126, 1755.