# Design and Synthesis of Nanoporous carbon materials Using

# **Cd-based Homochiral Metal-Organic Framework as**

## **Precursors for Supercapacitor Application**

### (Supplementary Information)

**Synthesis of compound L-1:** A mixture of  $Cd(OAc)_2 \cdot 4H_2O$  (0.4 mmol), L-DBTA (0.3 mmol), 4,4'-bpy (0.4 mmol), HCl aqueous solution (0.3 mL, 1 M), ethylalcohol (2 mL) and water (8 mL) was placed in an 18 mL Teflon-lined stainless steel vessel a nd stirred about 15 min in air. The vessel was sealed and heated at 120 °C for 5 d under autogenous pressure, and then cooled to room temperature naturally. Colorless block crystals of L-1 were obtained (70% yield based on Cd). Elemental analyses. Calcd. for C<sub>8</sub>H<sub>8</sub>O<sub>12</sub>Cd<sub>2</sub> (520.94): C 17.12, H 8.62, O 34.21; found: C 17.01, H 8.43, O 34.07. FT-IR (KBr): v = 3587(w), 3066(w), 2954(w), 2864(w), 2358(w), 1616(s), 1388(s), 1313(w), 1230(m), 1118(s), 1056(s), 1010(m), 923(w), 810(m), 711(m), 607(w), 517(w).

Synthesis of compound D-1: A mixture of  $Cd(OAc)_2 \cdot 4H_2O$  (0.4 mmol), D-DBTA (0.3 mmol), 4,4'-bpy (0.4 mmol), HCl aqueous solution (0.3 mL, 1 M), ethylalcohol (2 mL) and water (8 mL) was placed in an 18 mL Teflon-lined stainless steel vessel a nd stirred about 15 min in air. The vessel was sealed and heated at 120 °C for 5 d under autogenous pressure, and then cooled to room temperature naturally. Colorless block crystals of D-1 were obtained (70% yield based on Cd). Elemental analyses. Calcd. for C<sub>8</sub>H<sub>8</sub>O<sub>12</sub>Cd<sub>2</sub> (520.94): C 17.12, H 8.62, O 34.21; found: C 17.01, H 8.43, O 34.07. FT-IR (KBr): v = 3587(w), 3066(w), 2954(w), 2864(w), 2358(w), 1616(s), 1388(s), 1313(w), 1230(m), 1118(s), 1056(s), 1010(m), 923(w), 810(m), 711(m), 607(w), 517(w).

### Preparation of NPC800 and NPC900 material

Prior to the electrochemical examination, the sample was activated by the following procedure: the obtained cadmium based coordination polymer was placed under

vacuum at 150  $^\circ\!\!\mathbb{C}$  for 4 h to remove all water molecules. The nanoporous carbon

materials were designed by the heat treatment at 800 and 900  $^\circ\!\mathrm{C}$  in a argon atmosphere,

### respectively.

### FT-IR spectra analysis

The FT-IR spectra of NPC800 and NPC900 are shown in Fig. S3. The absorptions at  $3400 \text{ cm}^{-1}$  could be ascribed to -OH groups stretching vibration. The strong and abroad absorptions at around 1720 cm<sup>-1</sup> could be attributed to -COOH groups. The absorptions at 1408 cm<sup>-1</sup> could be ascribed to C-O stretching vibration.

### X-ray crystallography

Suitable single crystals with dimensions of  $0.19 \times 0.18 \times 0.17$  mm for compound L-1 and  $0.19 \times 0.18 \times 0.17$  mm for compound D-1 were glued on a glass fiber. Diffraction

intensity data were collected on a Bruker Smart Apex-II CCD diffractometer with Mo Ka mono-chromated radiation ( $\lambda$ = 0.71073 Å) at 296 K. Absorption corrections were applied using the multiscan technique. The structures were solved by the direct method and refined by the full-matrix least-squares method on F<sup>2</sup> using the *SHELXL*-97 and olex 2 software [1]. All of the non-hydrogen atoms were refined anisotropically. The organic hydrogen atoms were generated geometrically. The aqua hydrogen atoms were located from difference Fourier maps.

#### Reference

[1] (a) Sheldrick, G. M. *SHELXS*-97, Program for Crystal Structure Solution. University of Göttingen, Germany, **1997**; (b) Sheldrick, G. M. *SHELXL*-97, Program for Crystal Structure Refinement. University of Göttingen,Germany, **1997**. (c) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, J. Appl. Crystallogr., **2009**, 42, 339.

#### **Electrochemical measurements.**

The electrochemical behaviour of the nanoporous carbon materials was performed using button cell. The working electrode consisted of the active material, carbonblack, and a PTFE binder in a weight ratio of 8:1:1 onto a piece of nickel foam, which was

dried at 70°C for 18 h. The galvanostatic charge and discharge performance, cyclic

voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were performed with a CHI660e electrochemical instrument (Chenhua Inc., China).

#### **Materials and General Methods**

All chemicals were commercially purchased and used as supplied. Elemental analyses of C, H, O and N were performed using an EA1110 elemental analyzer. The IR spectrum was recorded in the range 4000-400 cm<sup>-1</sup> on a Nicolet 360 spectrometer with a pressed KBr pellet.

#### X-ray Powder diffraction for L-1

In order to check the phase purity of these compounds, the X-ray powder diffraction (XRPD) of L-1 was checked at room temperature, as shown in Figure S1. The peak positions of simulated and experimental XRPD patterns are in agreement with each other, indicating the good phase purity of L-1. The differences in intensity may be due to the preferred orientation of the crystalline powder sample.

### **Supporting Figures**



Scheme S1. The structure of L-tart and D-tart.



Fig. S1. The XRPD patterns based on the single-crystal structure of L-1: assynthesized sample (black) and simulated one (red).



Fig. S3. IR spectrum of NPC800 and NPC900.

| compound        | L-1                | D-1                |  |
|-----------------|--------------------|--------------------|--|
| formula         | $C_8H_8O_{12}Cd_2$ | $C_8H_8O_{12}Cd_2$ |  |
| fw              | 520.94             | 520.94             |  |
| $T(\mathbf{K})$ | 293(2)             | 296.15             |  |
| $\lambda$ (Å)   | 0.71073            | 0.71073            |  |
| crystal system  | Orthorhombic       | Orthorhombic       |  |
| space group     | $P2_{1}2_{1}2_{1}$ | $P2_{1}2_{1}2_{1}$ |  |
| <i>a</i> (Å)    | 7.5242(3)          | 7.5194(3)          |  |

| b (Å)                                     | 7.9258(3)  | 7.9248(3)  |
|-------------------------------------------|------------|------------|
| <i>c</i> (Å)                              | 19.5829(8) | 19.5768(8) |
| $V(Å^3)$                                  | 1167.83(8) | 1166.58(8) |
| Ζ                                         | 4          | 4          |
| $Dc (g/cm^3)$                             | 2.963      | 2.966      |
| $\mu$ (mm <sup>-1</sup> )                 | 3.715      | 3.719      |
| $R_1^{[a]} \left[ I > 2\sigma(I) \right]$ | 0.0291     | 0.0169     |
| $wR_2^{[b]}$ (all data)                   | 0.0699     | 0.0356     |
|                                           |            |            |

 $[a]R_1 = \sum ||F_0| - |F_C|| / \sum |F_0|; [b] wR_2 = \sum [w(F_0^2 - F_C^2)^2] / \sum [w(F_0^2)^2]^{1/2}$ 

 Table S2. Selected bond lengths [Å] and angles [°] for L-1 and D-1.

 L-1

|                  |     |                  |            | L- | •1               |     |                  |            |  |
|------------------|-----|------------------|------------|----|------------------|-----|------------------|------------|--|
| 02               | Cd2 | 09               | 86.81(17)  |    | 01               | Cd1 | C1               | 27.02(19)  |  |
| 02               | Cd2 | 07               | 146.19(18) |    | Cd2              | 02  | Cd1              | 152.0(2)   |  |
| 02               | Cd2 | 03               | 70.51(17)  |    | C1               | 02  | Cd2              | 120.7(4)   |  |
| $05^{1}$         | Cd2 | 02               | 84.6(2)    |    | C1               | 02  | Cd1              | 87.2(4)    |  |
| $05^{1}$         | Cd2 | $012^{2}$        | 116.5(2)   |    | C4               | 05  | $Cd2^5$          | 135.3(5)   |  |
| $05^{1}$         | Cd2 | 09               | 81.92(18)  |    | C8               | 010 | Cd1 <sup>6</sup> | 111.0(4)   |  |
| $05^{1}$         | Cd2 | 07               | 111.1(2)   |    | C5               | 012 | $Cd2^7$          | 117.8(4)   |  |
| $05^{1}$         | Cd2 | 03               | 150.9(2)   |    | C7               | 09  | Cd2              | 115.7(4)   |  |
| $012^{2}$        | Cd2 | 02               | 121.30(19) |    | C4               | 06  | Cd1 <sup>6</sup> | 122.2(4)   |  |
| $012^{2}$        | Cd2 | 09               | 146.14(17) |    | C6               | 07  | Cd2              | 125.7(4)   |  |
| $012^{2}$        | Cd2 | 07               | 79.46(17)  |    | C3               | 04  | Cd1 <sup>6</sup> | 112.8(3)   |  |
| $012^{2}$        | Cd2 | 03               | 90.00(18)  |    | C5               | 011 | Cd1 <sup>6</sup> | 116.8(4)   |  |
| 07               | Cd2 | 09               | 67.11(16)  |    | C6               | 08  | Cd1 <sup>8</sup> | 118.6(4)   |  |
| 07               | Cd2 | 03               | 84.23(16)  |    | C2               | 03  | Cd2              | 114.4(3)   |  |
| 03               | Cd2 | 09               | 81.76(16)  |    | 02               | Cd1 | C1               | 28.17(19)  |  |
| 02               | Cd1 | 010 <sup>3</sup> | 156.54(17) |    | 010 <sup>3</sup> | Cd1 | C1               | 165.98(19) |  |
| 063              | Cd1 | 02               | 99.80(18)  |    | 063              | Cd1 | 010 <sup>3</sup> | 80.60(17)  |  |
| 06 <sup>3</sup>  | Cd1 | 01               | 78.93(19)  |    | 06 <sup>3</sup>  | Cd1 | $04^{3}$         | 70.64(16)  |  |
| 06 <sup>3</sup>  | Cd1 | C1               | 85.4(2)    |    | 06 <sup>3</sup>  | Cd1 | $08^{4}$         | 116.28(17) |  |
| $04^{3}$         | Cd1 | 02               | 83.46(16)  |    | 02               | C1  | Cd1              | 64.6(3)    |  |
| $04^{3}$         | Cd1 | 010 <sup>3</sup> | 74.50(15)  |    | 02               | C1  | C2               | 119.7(6)   |  |
| $04^{3}$         | Cd1 | C1               | 101.32(19) |    | 01               | C1  | Cd1              | 58.9(4)    |  |
| $011^{3}$        | Cd1 | 02               | 98.44(17)  |    | C2               | C1  | Cd1              | 160.0(5)   |  |
| $011^{3}$        | Cd1 | 010 <sup>3</sup> | 71.11(16)  |    | $08^{4}$         | Cd1 | $010^{3}$        | 81.70(16)  |  |
| $011^{3}$        | Cd1 | 06 <sup>3</sup>  | 145.22(18) |    | $08^{4}$         | Cd1 | $04^{3}$         | 153.87(17) |  |
| $011^{3}$        | Cd1 | 043              | 82.39(17)  |    | $08^{4}$         | Cd1 | C1               | 104.31(19) |  |
| 011 <sup>3</sup> | Cd1 | 084              | 79.78(18)  |    | 01               | Cd1 | 02               | 54.64(17)  |  |

| $011^{3}$        | Cd1              | 01       | 135.34(19) | 01       | Cd1                | 0103             | 146.24(17) |
|------------------|------------------|----------|------------|----------|--------------------|------------------|------------|
| $011^{3}$        | Cd1              | C1       | 122.1(2)   | 01       | Cd1                | $04^{3}$         | 122.29(18) |
| 084              | Cd1              | 02       | 117.92(17) | 01       | Cd1                | 084              | 83.68(18)  |
| Cd2              | 02               |          | 2.257(5)   | 06 (     | Cd16               | 2.273            | (5)        |
| Cd2              | $05^{1}$         |          | 2.198(5)   | 04 (     | Cd16               | 2.448            | (5)        |
| Cd2              | $012^{2}$        |          | 2.200(5)   | 011 (    | Cd16               | 2.262            | (5)        |
| Cd2              | 09               |          | 2.523(5)   | 08 (     | Cd18               | 2.327            | (5)        |
| Cd2              | 07               |          | 2.311(5)   | 010 (    | Cd1 <sup>6</sup>   | 2.457            | (5)        |
| Cd2              | 03               |          | 2.430(5)   | 012 (    | $Cd2^7$            | 2.200            | (5)        |
| Cd1              | 02               |          | 2.451(5)   | Cd1 (    | $)8^{4}$           | 2.327            | (5)        |
| Cd1              | 010 <sup>3</sup> |          | 2.457(5)   | Cd1 (    | )1                 | 2.327            | (5)        |
| Cd1              | 06 <sup>3</sup>  |          | 2.273(5)   | Cd1 (    | 21                 | 2.709            | (7)        |
| Cd1              | $04^{3}$         |          | 2.448(5)   | 05 (     | $Cd2^5$            | 2.198            | (5)        |
| Cd1              | 0113             |          | 2.262(5)   |          |                    |                  |            |
|                  |                  |          | ]          | D-1      |                    |                  |            |
| 02               | Cd2              | 09       | 86.77(9)   | 01       | Cd1                | C1               | 27.01(10)  |
| 02               | Cd2              | 07       | 146.12(9)  | Cd2      | 2 02               | Cd1              | 151.99(13) |
| 02               | Cd2              | 03       | 70.43(9)   | C1       | 02                 | Cd2              | 120.5(2)   |
| $05^{1}$         | Cd2              | 02       | 84.74(11)  | C1       | 02                 | Cd1              | 87.3(2)    |
| $05^{1}$         | Cd2              | 09       | 82.25(9)   | C4       | 05                 | $Cd2^5$          | 134.9(2)   |
| $05^{1}$         | Cd2              | 07       | 111.15(11) | C8       | 010                | $Cd1^{6}$        | 111.32(19) |
| $05^{1}$         | Cd2              | 03       | 151.07(11) | С5       | 012                | $Cd2^7$          | 118.0(2)   |
| $012^{2}$        | Cd2              | 02       | 121.44(10) | С7       | 09                 | Cd2              | 115.98(19) |
| $012^{2}$        | Cd2              | $05^{1}$ | 116.34(11) | C4       | 06                 | $Cd1^{6}$        | 122.1(2)   |
| $012^{2}$        | Cd2              | 09       | 145.94(9)  | C6       | 07                 | Cd2              | 125.3(2)   |
| $012^{2}$        | Cd2              | 07       | 79.31(9)   | C3       | 04                 | $Cd1^{6}$        | 112.98(19) |
| $012^{2}$        | Cd2              | 03       | 89.90(10)  | C5       | 011                | $Cd1^{6}$        | 116.9(2)   |
| 07               | Cd2              | 09       | 67.07(9)   | C6       | 08                 | $Cd1^8$          | 118.9(2)   |
| 07               | Cd2              | 03       | 84.28(9)   | C2       | 03                 | Cd2              | 114.5(2)   |
| 03               | Cd2              | 09       | 81.75(8)   | C1       | 01                 | Cd1              | 94.1(2)    |
| 02               | Cd1              | C1       | 28.11(10)  | 09       | C7                 | C6               | 110.4(3)   |
| 0103             | Cd1              | 02       | 156.45(9)  | 09       | C7                 | C8               | 108.4(3)   |
| 010 <sup>3</sup> | Cd1              | C1       | 166.06(10) | $08^{4}$ | Cd1                | 010 <sup>3</sup> | 81.76(9)   |
| 06 <sup>3</sup>  | Cd1              | 02       | 99.92(10)  | $08^{4}$ | Cd1                | $04^{3}$         | 153.90(9)  |
| 063              | Cd1              | 010      | 3 80.41(9) | 084      | Cd1                | C1               | 104.29(10) |
| 06 <sup>3</sup>  | Cd1              | $04^{3}$ | 70.46(9)   | 01       | Cd1                | 02               | 54.59(9)   |
| 063              | Cd1              | $08^{4}$ | 116.34(9)  | 01       | Cd1                | $010^{3}$        | 146.38(9)  |
| 06 <sup>3</sup>  | Cd1              | 01       | 79.23(10)  | 01       | Cd1                | $04^{3}$         | 122.26(10) |
| 06 <sup>3</sup>  | Cd1              | C1       | 85.66(11)  | 01       | Cd1                | $08^{4}$         | 83.68(10)  |
| $04^{3}$         | Cd1              | 02       | 83.41(9)   | 011      | l <sup>3</sup> Cd1 | 01               | 135.22(10) |

| $04^{3}$  | Cd1              | 010 <sup>3</sup> | 74.46(9)   | 0   | $11^{3}$ | <sup>3</sup> Cd1 | C1       | 121.98(11) |
|-----------|------------------|------------------|------------|-----|----------|------------------|----------|------------|
| $04^{3}$  | Cd1              | C1               | 101.30(11) | 0   | $8^{4}$  | Cd1              | 02       | 117.94(9)  |
| $011^{3}$ | Cd1              | 02               | 98.40(9)   | 0   | $11^{3}$ | <sup>3</sup> Cd1 | $08^{4}$ | 79.79(10)  |
| $011^{3}$ | Cd1              | 010 <sup>3</sup> | 71.13(9)   | 0   | 2        | C1               | Cd1      | 64.6(2)    |
| $011^{3}$ | Cd1              | 06 <sup>3</sup>  | 145.03(9)  | 0   | 1        | C1               | Cd1      | 58.9(2)    |
| $011^{3}$ | Cd1              | $04^{3}$         | 82.43(9)   | C   | 2        | C1               | Cd1      | 159.8(3)   |
| Cd2       | 02               | 2.25             | 56(3)      | 06  | С        | d1 <sup>6</sup>  | 2.281(   | 3)         |
| Cd2       | $05^{1}$         | 2.20             | 00(3)      | 04  | С        | d1 <sup>6</sup>  | 2.439(   | 2)         |
| Cd2       | $012^{2}$        | 2.19             | 94(2)      | 011 | С        | $d1^{6}$         | 2.256(   | 2)         |
| Cd2       | 09               | 2.52             | 26(2)      | 08  | С        | $d1^{8}$         | 2.328(   | 3)         |
| Cd2       | 07               | 2.30             | )9(3)      | 05  | С        | $d2^{5}$         | 2.200(   | 3)         |
| Cd2       | 03               | 2.43             | 31(3)      | 010 | С        | $d1^{6}$         | 2.447(   | 3)         |
| Cd1       | 02               | 2.45             | 51(3)      | 012 | С        | $d2^{7}$         | 2.194(   | 2)         |
| Cd1       | 010 <sup>3</sup> | 2.44             | 17(3)      | Cd1 | 08       | $8^{4}$          | 2.328(   | 3)         |
| Cd1       | 06 <sup>3</sup>  | 2.28             | 31(3)      | Cd1 | 0        | 1                | 2.327(   | 3)         |
| Cd1       | $04^{3}$         | 2.43             | 39(2)      | Cd1 | С        | 1                | 2.711(   | 4)         |
| Cd1       | 0113             | 2.25             | 56(2)      |     |          |                  |          |            |

Symmetry transformations used to generate equivalent atoms: for L-1: #1 -x+3/2,-y+1,z-1/2, #2 - x+2,y+1/2,-z-1/2, #3 -x+1,y-1/2,-z-1/2, #4 -x+1,y+1/2,-z-1/2, #5 -x+2,y-1/2,-z-1/2, #6 -x+3/2,-y+1,z+1/2; for D-1: 11+x,+y,+z; 2+x,1+y,+z; 31/2+x,-1/2-y,-1-z; 41/2-x,-y,1/2+z; 5-1+x,+y,+z; 6-1/2+x,-1/2-y,-1-z; 7+x,-1+y,+z; 81/2-x,-y,-1/2+z