A novel metal-organic framework based on hexanuclear Co(II) clusters: structure, magnetism and its application as an anode material for lithium-ion battery

Yuan-Chun He,*^a Yang Yu,^a Lingyan Wang,^a Jiaqin Yang,^a Wei-Qiu Kan,*^b Yan Yang,^c Yao-Yao Fan,^a Zhihong Jing,^a Jinmao You*^{ad}

^a College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China

^b Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, P. R. China

^c School of Material Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021 P. R. China

^d Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, P. R. China

Physical measurements

PXRD patterns were conducted on a Rigaku Dmax 2000 X-ray diffractometer with graphite monochromatized Cu K_a radiation ($\lambda = 0.154$ nm) at 2 θ ranging from 5 to 50°. The C, H and N elemental analyses were measured on a Perkin–Elmer 2400 elemental analyzer. Infrared (IR) spectra were carried out on a Mattson Alpha-Centauri spectrometer at the range of 4000–400 cm⁻¹. Thermogravimetric analyses were performed on a Perkin-Elmer TG-7 analyzer heated from room temperature to 600 °C under nitrogen. The scanning electron microscopy (SEM) images were taken by using a JEOL-JSM-6700F field-emitting (FE) scanning electron microscope. X-ray photoelectron spectroscopy (XPS) was recorded on a PHI quantera SXM spectrometer with an Al K α = 280.00 eV excitation source. Variable-temperature magnetic susceptibility data were obtained using a SQUID magnetometer (Quantum Design, MPMS-5) with an applied field of 1000 Oe in the temperature range of 2-300 K. Transmission electron microscopy (TEM) images were acquired on a JEM-2100 electron microscope operated at 200 kV.

Electrochemical measurements

Compound **1** and Co₃O₄@C were ground into powder and used as the active materials, respectively. The active materials (60 wt%), acetylene black (30 wt%) and poly (vinylidenefluoride) (PVDF) (10 wt%) with *N*-methyl-2-pyrrolidone (NMP) were mixed carefully to form a homogeneous slurry, which was coated on a copper foil and dried at 100 °C for 12 h in vacuum. The mass loading of active material in the electrode was around 1.5 mg cm⁻², and the thickness of the electrode is around 20 μ m. In an argon-filled glovebox, the cathode and anode (lithium foil) were separated by celgard 2400 as the separator with a solution of 1.0 M LiPF₆ in ethylene carbonate (EC)/diethyl carbonate (DEC) (1:1 by volume) as the electrolyte, and the coin cells were assembled successfully. The galvanostatic charge and discharge tests were carried out on a Land automatic battery tester (Wuhan, China) at 298 K.

X-ray crystallography

Single-crystal X-ray diffraction data for 1were recorded on an Oxford Gemini R Ultra diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at 293 K. All the structures were solved by Direct Method of SHELXS-97 and refined by full-matrix least- squares techniques using the SHELXL-97 program within WINGX.¹ Non-hydrogen atoms were refined anisotropically, and hydrogen atoms of ligands were located at their calculated positions. Selected bond distances and angles for **1** are given in Table S2.

Magnetic Properties

The temperature-dependent magnetic susceptibility was measured on powder sample of compound **1** at 1000 Oe in the range of 2-300 K. The $\chi_m T$ and $1/\chi_m$ versus *T* plots are shown in Fig. S9. The $\chi_m T$ value of [Co₆] cluster at 300 K is 21.2 cm³ mol⁻¹ K, which is larger than the value six magnetically isolated spin-only S = 3/2 Co²⁺ systems (11.3 cm³ mol⁻¹ K). It reveals the significant orbit contribution to high-spin Co²⁺ cation in an octahedral coordination environment. As temperature decreases, the $\chi_m T$ value decreases smoothly to reach a minimum value of 14.5 cm³ mol⁻¹ K at 20 K, then increases rapidly to 16.7 cm³ mol⁻¹ K at 2 K. Above 50 K, the temperature dependence of $1/\chi_m$ obeys the Curie-Weiss law with C = 25.0 cm³ mol⁻¹ K and $\theta = -$ 29.0 K, which suggests dominant antiferromagnetic interactions between the [Co₆] cluster and the presence of spin-orbit couplings.

Fig. S1 Coordination mode of organic ligand.

Fig. S2 View of the hexanuclear $[Co_6]$ cluster.

Fig. S3 View of the 3D framework.

Fig. S4 View of the 6-connected net with Schläfli symbol of $4^{12} \cdot 6^3$.

Fig. S5 TG curve of compound 1.

Fig. S6 XPS spectrum of $Co_3O_4@C$.

Fig. S7 TG curve of $Co_3O_4@C$.

Fig. S8 IR spectrum of compound 1.

Fig. S9 Temperature dependence of $\chi_m T$ and $1/\chi_m$ versus *T* plots for compound **1**.

Samples	Current density/mA g ⁻¹	Cycles	Capacity/mA h g ⁻¹	Reference
Co ₃ O ₄ @C	100	30	796	This work
	4000	1000	197	
Co_3O_4	500	50	574	2
	2000	50	569	
Co ₃ O ₄ @C	100	100	1137	3
Co_3O_4	100	100	762	4
Co_3O_4	100	80	683	5
Co_3O_4	100	200	787	6
Co ₃ O ₄ @C	89	200	877	7
Co ₃ O ₄	100	100	886	8

 Table S1 Comparison of the electrochemical performaces of Co-MOFs derived

 materials reported in the literatures

Table S2 Selected bond distances (Å) and angles (°) for 1.

Co(1)-O(4) ^{#1}	2.035(4)	Co(1)-O(5) ^{#2}	2.063(5)
Co(1)-O(1) ^{#2}	2.069(4)	Co(1)-O(1)	2.095(4)
Co(1)-O(3) ^{#3}	2.116(5)	Co(1)-O(2) ^{#4}	2.133(5)
$O(4)^{\#1}-Co(1)-O(5)^{\#2}$	90.5(2)	O(4) ^{#1} -Co(1)-O(1) ^{#2}	176.03(19)
O(5) ^{#2} -Co(1)-O(1) ^{#2}	85.72(17)	O(4) ^{#1} -Co(1)-O(1)	89.66(18)
O(5) ^{#2} -Co(1)-O(1)	178.08(19)	O(1) ^{#2} -Co(1)-O(1)	94.1(2)
$O(4)^{\#1}-Co(1)-O(3)^{\#3}$	87.95(19)	O(5) ^{#2} -Co(1)-O(3) ^{#3}	89.80(19)
O(1) ^{#2} -Co(1)-O(3) ^{#3}	93.18(17)	O(1)-Co(1)-O(3)#3	92.12(17)
O(4) ^{#1} -Co(1)-O(2) ^{#4}	88.44(19)	O(5) ^{#2} -Co(1)-O(2) ^{#4}	82.46(19)
O(1) ^{#2} -Co(1)-O(2) ^{#4}	89.92(18)	O(1)-Co(1)-O(2)#4	95.63(17)
O(3) ^{#3} -Co(1)-O(2) ^{#4}	171.43(18)		

Symmetry transformations used to generate equivalent atoms: ^{#1} x+1/3,x-y-1/3,z+1/6; ^{#2} x-y,x,-z; ^{#3} y+2/3,x+1/3,-z-1/6; ^{#4} y,-x+y,-z.

- (a) G. M. Sheldrick, SHELXL-97, Programs for X-ray Crystal Structure Solution; University of Göttingen: Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, Programs for X-ray Crystal Structure Refinement; University of Göttingen: Göttingen, Germany, 1997; (c) L. J. Farrugia, WINGX: A Windows Program for Crystal Structure Analysis; University of Glasgow: Glasgow, UK, 1988.
- 2 W.-W. Shi, H. Zhang, X.-Y. Zheng, S.-F. Lou, B.-W. Hu, G.-P. Yin and Y.-Z. Gao, New J. Chem., 2017, 41, 6187–6194.
- 3 B. Qiu, W. Guo, Z. Liang, W. Xia, S. Gao, Q. Wang, X. Yu, R. Zhao and R. Zou, *RSC Adv.*, 2017, **7**, 13340–13346.
- 4 F. Zhang, D.-D. Qi and X.-G. Zhang, Int. J. Electrochem. Sci., 2016, 11, 189–199.
- 5 J. Chen, X. Mu, M. Du and Y. Lou, Inorg. Chem. Commun., 2017, 84, 241-245.
- 6 Y. Chen, Y. Wang, H. Yang, H. Gan, X. Cai, X. Guo, B. Xu, M. Lü and A. Yuan, *Ceram. Int.*, 2017, 43, 9945–9950.
- 7 G. Wang, F. Zhu, J. Xia, L. Wang, Y. Meng and Y. Zhang, *Electrochimica Acta*, 2017, 257, 138–145.
- 8 F. Zheng, Z. Yin, H. Xia and Y. Zhang, Mater. Lett., 2017, 197, 188–191.