Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Robust bulk preparation and characterization of salt - cocrystal polymorphs of sulfamethazine and saccharine complex

Sathyanarayana Reddy Perumalla,‡ # Chenguang Wang,‡ # Yiwang Guo, Limin Shi, and Changquan Calvin Sun*

Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA

S.R.P. and C.G.W. contributed equally to this work.

*Corresponding author

Changquan Calvin Sun, Ph.D.

9-127B Weaver-Densford Hall

308 Harvard Street S.E.

Minneapolis, MN 55455

Email: sunx0053@umn.edu

Tel: 612-624-3722

Fax: 612-626-2125

Solid Form	Salt (Form I)	Cocrystal (Form II)
Chemical formula	$C_{19}H_{19}N_5O_5S_2$	
Formula weight	461.51	
Crystal system	Orthorhombic	Monoclinic
Space group	Pbca	$P2_1/c$
a/Å	10.4993(5)	8.0291(2)
b/Å	16.0117(8)	17.5002(4)
c/Å	25.1481(12)	14.6076(3)
α/°	90	90
β/°	90	107.827(4)
γ/°	90	90
Z	8	4
Z'	1	1
Volume (Å ³)	4227.7(4)	1953.98(8)
wR2	0.0877	0.1050
D _{calculated} (g cm ⁻³)	1.450	1.569
T (K)	123	123
CCDC	1452828	1511452

 Table S1. Crystallographic parameters of sulfamethazine-saccharin complex.

Table S2. CSD-refcodes of crystals containing sulfamethazine and/or saccharin (Conquest version 5.39)

$\begin{array}{ c c c c } \hline \\ H \\ H \\ CH_3 \\ CH_3 \\ CH_1 \\ CH_$	AWIJEW, VAMBIX, EXAMUM, EXAPAV, EXAPEZ, EXAPID, EXAPID01, EXAPUP
نطع Imidine SMT, neutral	
	SCCHRN06 SCCHRN07 YANNEH01 ADECIW BEXVOP ENAHEH HORNEI IHEJEK KIJSAZ LATQOO LOPZAT OTESAI OTESEM SCCHRN SCCHRN01 SCCHRN02 SCCHRN03 SCCHRN04 SCCHRN05 UFERED UNEZAO UNEZAO01 UNEZAO02 VAMBIX VIGFOH VUHFIO VUHFIO01 WUWREM WUWRIQ XOBCUN YANNEH ZIPDIN ZUZBIH ZUZBON YAJFIB YANNEH01
(Neutral SAC only)	
(SAC anion only)	EWAYIM IKUNEJ OSAHUM01 ADATIJ AGETOW AJOHUC AKEXET BODHAE BODHEI BODHIM BODHOS BOYMEH BUHMEY CABTEF COCRIV COXYIY COXZAR CUXFUW CUXGIL DEXNIE DOHVUS EBEBAQ EGOCEI EKEHOS EKEHUY EKEJAG EKEJIO EMATOC EXOYEV FAGYIW FAGYUI FAGZAP FAGZET FAGZIX FAGZOD FAGZUJ FEYPUW FOCTAU FUDZUA GEHVUL GEHWAS GODHIQ GUQXEV HONBOC HOPJEC HOQKEE HULYAO HULYES HUQTOC HUQVAQ HUQVEU IGALOR
	IGAYAQ IGAYAQ01 IGAYEU IGAYEU01 IGAYIY ILEDAF KAKGAG KEBKAF KEXVEO KICWEA KUTJAM LEHHUC LEHJAK LEJZEG LEJZEG01 LORBUR LOYCAD MEVQIN MEVQOT MGSACA
	MGSACA10 MGSACD MGSACD10 MGSACD11 MIPSUA MIRWOA MUCBIV MUKWAQ MUKWEU NAXSUC NAXTAJ NIZCAC NOCKEV NOFYIQ OBIROG OBIROG01 OBIRUM OBIRUM01 OBIRUM02 ODEBAB ODEJUD ODEJUD01 ODEJUD02 ODIHUF OJIZUC OJOBAQ OLOQEL ONUQAQ
	ONUQEU ONUQIY OQEKIF OQEKOL ORETEL ORETIP ORETOV ORETOV01 OSAHUM PAGBEE PEFZIL PEMPIH PIGSOO PIMDEU01 PIWWUP PULZEC

	OAGBUW OAGCAD OAGCEH OAGCIL
	OAPMEA OAPMIE OARLAX OAYVAP
	OAYVET OEKVEL OEKVIM OEKVOS
	OFKVUY OFKWAF OFKWEL OFKWIN
	OFKWOT OFKWUZ OFMI FA OFMI IF
	OFMLOK OLYPHI OOGHOK OUGFUU
	RAFROH RAMZEK RANBEN RANBEN01
	REHCIR ROIKOS ROIKUV ROKNOV
	PUZZOC SELVUC SUYAM SUYEO
	SOGOEL TAVOOR TAVOUH TURVIM
	IDANIH IMAYOV IMAYID VAWDAI
	VAWDED VAWDIT VAWDOZ VAWDIE
	VAWIEI VAWIII VAWIOZ VAWIOF VAWIEI VAWOAM VAWOEO VECIEZ
	VECLEZAL VECHAD VECHEE VECHI
	VEOLEZUI VEQNAD VEQNEF VEQNIJ
	VECTOR VECTORIAL VOCTION VERTOR
	VUNIALI VUNIEV WUVVOO WUVVOO1
	WINSID VADSOL VODCOLL VODCOLLA
	VODAL VINHID VINIA7 VAUGAD
	AODQAI AUVIUK AUVJAZ TAHUAF VANMUW VANMUW01, VANNAD, VANNII
	IANMUW IANMUWUI IANNAD IANNIL
	YUHLIQ YUHLUW YULYAZ ZEUFES
	ZEYKAK ZEYQAX ZUVWUK ZUVAAK
	ZUYJIO ZZZFPE ZZZFPI ZZZFPO
	QEKBAM EWAYIM EYAYUU EZOMAJ
	EZOMAJOI FAZHIA FAZHOG IKUNEJ
	ILEDAF KECJEK OSAHUMOI YAJFEX
	ZECQOQ ZECQUW
	FAGYOC FAHBAS FAHBEW FAHBIA
	FAHBOG FAHCAT FAHCEX QOGHUQ
	RABBAZ RABBED RUZZUI WOVLEY
	WOVLEY01 FAZHEW
(Both charged and neutral SAC)	

Figure S1. Calibration curve of SMT-SAC solution at 245nm. (y = 0.0098x + 0.0018, $R^2 = 0.9997$)

Figure S2. PXRD of SMT-SAC Form I (pure acetonitrile) and Form II (acetonitrile: water, 99:1, v/v) prepared by slurry method.

Figure S3. Needle morphology of SMT-SAC Form II crystallized from co-solvents of acetonitrile and water (99:1).

Figure S4. IR spectra of SMT-SAC Forms I and II in the ranges of 600–3600 cm⁻¹.

Figure S5. TGA traces of SMT-SAC Forms I and II.

Figure S6. IDR of SMT-SAC Forms I and II at different temperatures from 5 to 37 °C in acetonitrile.

Figure S7. a) IDR of SMT-SAC Forms I at 25 and 37 °C in water; b) PXRD patterns of SMT-SAC pellets after IDR experiment in water at 25 °C. The absence of characteristic peaks of Form I indicates complete conversion of Form I to II. The appearance of characteristic peaks of SMZ and SAC indicates partial dissociation of the SMT-SCA complex.

10

Method for calculating transition temperature between Forms I and II using DSC data

The virtual transition temperature $({}^{T}_{0})$ between Form II and Form I was estimated by Yu's method.¹ The following equations 1-8 were used. ${}^{\Delta H}_{m,I}, {}^{\Delta H}_{m,II}, {}^{T}_{m,I}, {}^{T}_{m,II}$ are heat of fusion of Form I, heat of fusion of Form II, melting point of Form I, melting point of Form II. ${}^{C}_{P,L}, {}^{C}_{P,II}$ are heat capacity of super-cooled liquid and heat capacity of Form II. Among them, $({}^{C}_{P,L} - {}^{C}_{P,II})$

 $\Delta H_{m,II}$ was usually excess 0.001/K and less than 0.007/K with averaged value near 0.003/K. $\Delta G_0 \Delta H_0$ and ΔS_0 are Gibbs free energy, enthalpy and entropy change from form II to Form I at $T_{m,I}$.

$$\Delta H_0 = \Delta H_{m,I} - \Delta H_{m,II} + \int_{T_{m,I}}^{T_{m,II}} (C_{P,L} - C_{P,II}) dt$$

$$\Delta S_{0} = \frac{\Delta H_{m,I}}{T_{m,I}} - \frac{\Delta H_{m,II}}{T_{m,II}} + \int_{T_{m,I}}^{T_{m,II}} \frac{(C_{P,L} - C_{P,II})}{t} dt$$

 $Since \ \Delta G = \Delta H - T \Delta S$

 $\Delta G_0 = \Delta H_{m,II} \left(\frac{T_{m,I}}{T_{m,II}} - 1 \right) + \left(C_{P,L} - C_{P,II} \right) \left[T_{m,II} - T_{m,I} - T_{m,I} ln \left(\frac{T_{m,II}}{T_{m,I}} \right) \right] \frac{Equation 4}{Equation 4}$ If ΔG is approximately liner in a temperature range $\left(\frac{d\Delta G}{dT} = -\Delta S \right)$, its value at an arbitrary

If ΔG is approximately liner in a temperature range (dT), its value at an arbitrary temperature T below $T_{m,A}$ can be obtained by

At
$$T_{0}$$
, ΔG equals zero, we get

 $\Delta G = \Delta G_0 - \Delta S_0 (T - T_m)$

 ΔH_0

m

$$T_{0} = \frac{\Delta H_{m,I} - \Delta H_{m,II} + (C_{P,L} - C_{P,II})(T_{m,II} - T_{m,I})}{\frac{\Delta H_{m,I}}{T_{m,I}} - \frac{\Delta H_{m,II}}{T_{m,II}} + (C_{P,L} - C_{P,II})ln\left(\frac{T_{m,II}}{T_{m,I}}\right)}{\frac{Equation 7}{T_{m,II}}}$$

<u>Equation 1</u>

Equation 3

<u>Equation 6</u>

Equation 5

$$T_{0} = \frac{\Delta H_{m,I} - \Delta H_{m,II} + 0.003\Delta H_{m,II} (T_{m,II} - T_{m,I})}{\frac{\Delta H_{m,I}}{T_{m,I}} - \frac{\Delta H_{m,II}}{T_{m,II}} + 0.003\Delta H_{m,II} ln \left(\frac{T_{m,II}}{T_{m,I}}\right)}{\frac{Equation 8}{2}}$$

From equation 8, To was 477.42 K, which is higher than the melting point of Form II (179.4 K) ΔG as a function of temperature (K) can be calculated using Equation 9 (thick segment in Figure 9).

 $\Delta G(J/mol) = 0.02669*T + 12.7423$

Equation 9