Supplementary Information

Separation of *p*-xylene from aromatic compounds through specific inclusion by acyclic host molecule

Masatoshi Kawahata,* Tadashi Hyodo, Masahide Tominaga and Kentaro Yamaguchi*

Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan

E-mail: kawahatam@ac.shoyaku.ac.jp and kyamaguchi@kph.bunri-u.ac.jp

Table of Contents

General Information	S2
Fig. S1 Partial ¹ H NMR spectra; (a) crystal 1 , (b) <i>p</i> -xylene, and (c) crystal $1.0.5p$ -xyl	lene.
Fig. S2 Additional crystal data for crystal 1.0.5 <i>p</i> -xylene.	S3
Fig. S3 Additional crystal data for crystal 1.	S4
Fig. S4 The 2D fingerprint plots of specified interactions of <i>p</i> -xylene in $1.0.5p$ -xylene	e.
Fig. S5 Distribution of each interaction of <i>p</i> -xylene in crystal 1.0.5 <i>p</i> -xylene.	S5
Fig. S6 The 2D fingerprint plots of specified interactions of 1 in crystal $1.0.5p$ -xylen	e.
Fig. S7 The 2D fingerprint plots of specified interactions of 1 in crystal 1.	
Fig. S8 Distribution of each interactions of 1 in crystals 1.0.5 <i>p</i> -xylene and 1.	S6

General Information

All reagents and solvents were obtained from commercial suppliers and used without further purification. The synthesis of compound **1** was performed according to the previously reported literature.¹ ¹H and ¹³C NMR spectra were performed on a Bruker AV400 spectrometer in CDCl₃ using tetramethylsilane as an internal standard at 298 K. X-ray crystal structure data were collected using a Bruker D8 VENTURE diffractometer with CuK α radiation.

(1) M. Tominaga, N. Kunitomi, K. Katagiri and T. Itoh, Org. Lett., 2015, 17, 786-789.

Fig. S1 Partial ¹H NMR spectra (400 MHz, CDCl₃); (a) crystal **1**, (b) *p*-xylene, and (c) crystal **1**·0.5*p*-xylene.

Single crystal X-ray diffraction experiment for 1.0.5*p*-xylene

The colourless plate crystal ($0.200 \times 0.120 \times 0.050 \text{ mm}^3$), obtained from chloroform/*p*xylene, was immersed in Paraton-N oil and placed in the N₂ cold stream at 100 K. The diffraction experiment was performed in a Bruker D8VENTURE system (PHOTON-100 CMOS detector, CuK α : $\lambda = 1.54178$ Å). Absorption correction was performed by an empirical method implemented in SADABS.² Structure solution and refinement were performed by using SHELXT-2014/5³ and SHELXL-2016/6⁴.

 $C_{38}H_{39}Cl_2N_4O_6$, Mr = 718.63; triclinic, space group *P*-1, Z = 2, $D_{calc} = 1.424$ g·cm⁻³, a = 10.7680(5), b = 12.2601(6), c = 13.3043(6) Å, $\alpha = 97.054(2)^\circ$, $\beta = 101.999(2)^\circ$, $\gamma = 98.839(2)^\circ$, V = 1675.71(14) Å³, 22483 observed and 5948 independent [$I > 2\sigma(I)$] reflections, 456 parameters, final $R_1 = 0.0372$, $wR_2 = 0.0960$, S = 1.033 [$I > 2\sigma(I)$]. CCDC 1842175

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 137, 23 and 43) with $U_{\rm iso}$ values constrained to 1.2/1.5 $U_{\rm eq}$ of their parent atoms.

Fig. S2 Ortep drawing of crystal 1.0.5*p*-xylene (50% probability).

Single crystal X-ray diffraction experiment for 1

The colourless prismatic crystal ($0.100 \times 0.100 \times 0.040 \text{ mm}^3$), obtained from *o*xylene/chloroform, was immersed in Paraton-N oil and placed in the N₂ cold stream at 100 K. The diffraction experiment was performed in a Bruker D8VENTURE system (PHOTON-100 CMOS detector, CuKa: $\lambda = 1.54178$ Å). Absorption correction was performed by an empirical method implemented in SADABS.² Structure solution and refinement were performed by using SHELXT-2014/5³ and SHELXL-2016/6⁴.

 $C_{34}H_{34}Cl_2N_4O_6$, Mr = 665.55; monoclinic, space group C2/c, Z = 4, $D_{calc} = 1.417$ g·cm⁻³, a = 23.5127(11), b = 7.1104(3), c = 19.6874(9) Å, $\beta = 108.636(2)^\circ$, V = 3118.9(2) Å³, 20154 observed and 3022 independent $[I > 2\sigma(I)]$ reflections, 211 parameters, final $R_1 = 0.0307$, $wR_2 = 0.0867$, S = 1.092 $[I > 2\sigma(I)]$. CCDC 1842176

All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were refined isotropically on the calculated positions using a riding model (AFIX 13, 137, 23 and 43) with $U_{\rm iso}$ values constrained to 1.2/1.5 $U_{\rm eq}$ of their parent atoms.

Fig. S3 Ortep drawing of crystal 1 (50% probability).

- (2) G. M. Sheldrick, (1996). SADABS. University of Göttingen, Germany.
- (3) G. M. Sheldrick, Acta. Cryst., 2015, A71, 3-8.
- (4) G. M. Sheldrick, Acta. Cryst., 2015, C71, 3-8.

Fig. S4 The 2D fingerprint plots focusing on the specific interactions of *p*-xylene in crystal 1.0.5p-xylene.

Fig. S5 Distribution of each interactions of *p*-xylene in crystal 1.0.5*p*-xylene.

Fig. S6 The 2D fingerprint plots focusing on the specific interactions of **1** in crystal **1**·0.5*p*-xylene.

Fig. S7 The 2D fingerprint plots focusing on the specific interactions of 1 in crystal 1.

Fig. S8 Distribution of each interactions of 1 in crystal 1.0.5*p*-xylene and 1 in crystal 1.