Significance of crystal habit sphericity in determination of impact sensitivity of bistetrazole-based energetic salts

Sergey V. Bondarchuk

Department of Chemistry and Nanomaterials Science, Bogdan Khmelnitsky Cherkasy National University, blvd. Shevchenko 81, 18031 Cherkasy, Ukraine. Fax: (+3) 80472 37-21-42; Tel: (+3) 80472 37-65-76;

E-mail: bondchem@cdu.edu.ua

SUPPORTING INFORMATION

CrystEngComm

LIST OF SUPPLEMENTARY FIGURES AND TABLES:

Fig. S1. Crystal packing of the studied energetic salts	S3
Table S1. The calculated and experimental (in parentheses) asymmetric cell parameters of the studied energetic salts.	S4
Table S2. The asymmetric cell volumes, relative errors of their estimation, experimental friction sensitivity, energies of the frontier crystal orbitals and oxygen balance.	S5
Fig. S2. The predicted crystal habits of salts 2-20	S6
Table S3. The selected crystal habit properties for salts 2-20	S7
Table S4. Decomposition schemes for the studied energetic salts according to the H2O–CO2 arbitrary	S9
Fig. S3. Separate correlation of decomposition temperature (a), crystal habit sphericity (b) with impact sensitivity and function Ω with friction sensitivity (c)	S10

Fig. S1. Crystal packing of the studied energetic salts.

Table S1. The calculated and experimental (in parentheses) asymmetric cell parameters of the studied energetic salts.

Salt	Space group	<i>a</i> (Å)	<i>b</i> (Å)	<i>c</i> (Å)	α (°)	β (°)	γ (°)	Ref
1	$P2_{1}/c$	5.527 (5.426)	11.523 (11.660)	6.480 (6.501)		96.10 (95.26)		[24]
2	<i>I</i> 222	7.001 (7.527)	8.850 (7.531)	12.684 (13.291)				[39]
3	$P\overline{1}$	3.601 (3.660)	8.696 (8.670)	14.810 (14.711)	101.60 (101.10)	94.80 (94.95)	97.35 (97.74)	[39]
4	$P2_{1}/c$	3.567 (3.605)	17.211 (17.123)	9.532 (9.548)		98.52 (97.73)		[39]
5	<i>C</i> 2/ <i>m</i>	15.007 (14.724)	6.047 (6.182)	8.517 (8.702)		121.72 (123.28)		[39]
6	$P\overline{1}$	7.050 (7.117)	8.087 (8.090)	10.629 (10.544)	100.15 (100.36)	101.60 (102.07)	105.31 (105.13)	[39]
7	$P2_{1}/c$	7.027 (6.994)	12.764 (12.7121)	11.636 (11.5676)		94.40 (93.51)		[39]
8	$P2_{1}/c$	4.554 (4.554)	12.302 (12.424)	12.964 (12.943)		93.64 (93.77)		[39]
9	$P2_{1}/c$	11.439 (11.712)	4.781 (4.760)	11.320 (11.367)		113.66 (115.65)		[39]
10	$P\overline{1}$	4.824 (4.845)	6.794 (6.786)	9.465 (9.392)	75.69 (75.12)	76.37 (76.63)	89.00 (88.73)	[39]
11	$P\overline{1}$	7.424 (7.405)	7.875 (7.926)	9.550 (9.475)	93.931 (93.64)	90.18 (90.44)	106.50 (106.27)	[39]
12	$P2_{1}/n$	6.224 (6.275)	26.243 (26.188)	7.465 (7.408)		93.94 (93.55)		[39]
13	C2/c	7.446 (7.425)	9.197 (9.175)	13.760 (13.687)		99.12 (98.79)		[39]
14	$P\overline{1}$	6.282 (6.291)	7.409 (7.396)	11.858 (11.878)	106.79 (107.43)	99.98 (99.93)	98.77 (98.49)	[39]
15	$P\overline{1}$	7.519 (7.449)	8.576 (8.402)	8.497 (8.651)	93.03 (91.72)	114.52 (114.59)	92.70 (92.70)	[39]
16	C2/c	27.212 (27.041)	3.737 (3.763)	16.766 (16.874)		117.49 (117.62)		[39]
17	$P2_{1}/c$	4.911 (4.900)	13.067 (13.081)	9.964 (9.893)		102.27 (102.07)		[40]
18	$P2_{1}/n$	9.137 (9.046)	8.485 (8.459)	11.046 (11.096)		99.39 (99.37)		[40]
19	$P2_{1}/n$	8.347 (8.438)	5.543 (5.440)	19.805 (19.786)		92.86 (93.38)		[40]
20	$P\overline{1}$	7.293 (7.322)	7.426 (7.363)	9.850 (9.819)	84.59 (85.38)	75.04 (74.16)	84.81 (84.56)	[40]

Salt	V_{exper} (Å ³)	V_{calcd} (Å ³)	δ (%)	FS(N)	$E_{\rm HOCO}~({\rm eV})$	$E_{\rm LUCO} ({\rm eV})$	OB (%)
1	410.36	409.57	0.85	120 ^a	-6.200	-2.602	-27.1
2	785.53	753.41	0.61	360 ^b	-5.848	-2.742	-47.0
3	447.78	450.88	-0.10	252 ^b	-5.387	-2.573	-47.8
4	579.06	584.03	-1.42	360 ^b	-5.653	-2.22	-66.6
5	658.15	662.2	0.94	324 ^b	-5.703	-2.404	-65.4
6	555.7	555.15	0.75	120^{b}	-5.935	-2.769	-49.3
7	1041.07	1026.53	-0.50	240^{b}	-6.088	-2.767	-40.3
8	723.84	730.72	-0.26	360 ^b	-6.145	-3.171	-51.2
9	566.99	571.26	-0.11	288^{b}	-6.062	-3.159	-41.8
10	291.58	290.12	-1.05	80^b	-5.699	-4.269	-51.2
11	533.99	532.58	-0.13	168 ^b	-6.317	-3.025	-49.1
12	1216.32	1215.02	-1.18	192 ^b	-6.212	-3.214	-27.1
13	931.19	921.47	0.49	72^{b}	-6.118	-2.916	-40.8
14	508.25	507.59	-0.72	240^{b}	-6.192	-3.010	-56.5
15	496.85	491.06	-0.98	160^{b}	-6.054	-2.859	-41.5
16	1513.94	1521.38	-0.95	360 ^b	-6.098	-2.678	-117.9
17	624.57	620.1	-1.14	30 ^c	-6.658	-2.988	-37.2
18	845.98	837.74	0.85	160 ^c	-6.086	-2.384	-36.3
19	915.25	906.65	0.61	240 ^c	-5.995	-2.293	-52.4
20	511.92	506.13	-0.10	240 ^c	-6.088	-2.954	-62.0

Table S2. The asymmetric cell volumes, relative errors of their estimation, experimental friction sensitivity, energies of the frontier crystal orbitals and oxygen balance.

^a Ref. 24, ^b Ref. 39, ^c Ref. 40.

Fig. S2. The predicted crystal habits of salts 2-20.

Table S3. The selected crystal habit properties for salts 2-20.

Salt 2	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	$(0\ 0\ 2)$ $(0\ 1\ 1)$	2	-21.18	1.00	37.19
	$(0 \ 1 \ 1)$ $(1 \ 0 \ 1)$	4	-49.92	2.36	24.44
Salt 3	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	$(0 \ 0 \ 1) \\ (0 \ 1 \ 0) \\ (1 \ 0 \ 1) \\ (1 \ 0 \ 0) \\ (1 \ 0 \ -1) \\ (1 \ -1) \ -1) \\ (1 \ -1) \ -1) \ (1 \ -1) \ -1) \\ (1 \ -1) \ (1 \ -1) \ -1) \ (1 \ -1) \ -1) \ (1 \ -1) \ -1) \ (1 \ -1) \ -1) \ (1 \ -1) \ -1) \ (1 \ -1) \ -1) \ (1 \ -1) \ (1 \ -1) \ (1 \ -1) \ -1) \ (1 \ -1) \ (1 \ -1) \ -1) \ (1 \ -1)$	2 2 2 2 2 2 2 2	-17.84 -30.13 -28.79 -60.64 -61.01 -57.60	1.00 1.69 1.61 3.40 3.42 3.23	47.30 16.26 16.12 2.41 0.25 5.66
	(1 -1 1) $(1 -1 -2)$ $(1 1 -1)$ $(1 -1 2)$ $(1 1 -2)$ $(1 1 -3)$ $(1 2 -2)$	2 2 2 2 2 2 2 2 2	-57.88 -57.34 -59.68 -54.16 -56.21 -52.87 -53.69	3.24 3.21 3.35 3.04 3.15 2.96 3.01	0.54 0.14 0.23 4.70 0.86 3.65 1.89
Salt 4	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	(0 2 0) (0 1 1) (1 0 0) (1 1 0) (1 1 1)	2 4 2 4 4	-35.43 -39.96 -122.61 -120.59 -111.06	1.00 1.13 3.46 3.40 3.13	33.33 51.57 0.82 7.94 6.34
Salt 5	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	(0 0 1) (2 0 -1) (1 1 0) (1 1 -1) (1 1 1)	2 2 4 4 4	-44.81 -15.13 -75.79 -75.79 -75.79	2.96 1.00 5.01 5.01 5.01	18.71 65.14 11.52 2.42 2.21
Salt 6	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	$\begin{array}{c} (0 \ 0 \ 1) \\ (0 \ 1 \ 0) \\ (0 \ 1 \ -1) \\ (1 \ 0 \ 0) \\ (1 \ -1 \ 0) \\ (0 \ 1 \ 1) \\ (1 \ 0 \ 1) \end{array}$	2 2 2 2 2 2 2 2 2	-13.77 -22.65 -24.43 -32.53 -35.68 -22.76 -30.75	1.00 1.64 1.77 2.36 2.59 1.65 2.23	45.57 17.82 9.87 15.56 8.19 2.48 0.52
Salt 7	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	$\begin{array}{c} (0 \ 1 \ 1) \\ (1 \ 0 \ 0) \\ (0 \ 2 \ 0) \\ (1 \ 1 \ 0) \\ (0 \ 0 \ 2) \\ (1 \ 1 \ -1) \\ (1 \ 1 \ 1) \\ (1 \ 0 \ 2) \end{array}$	4 2 2 4 2 4 4 2	-38.45 -26.97 -49.35 -39.02 -45.90 -34.85 -42.58 -50.21	1.43 1.00 1.83 1.45 1.70 1.29 1.58 1.86	36.07 26.05 3.94 4.71 4.58 22.15 2.37 0.14
Salt 8	(hkl)	Multiplicity	E _{att} (kJ mol ⁻¹)	R _{hkl}	S_{rel} (%)
	(0 1 1) (0 0 2) (1 0 0)	4 2 2	-28.68 -15.52 -36.34	1.85 1.00 2.34	35.76 41.30 22.93

Salt 9	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	(1 0 0) (0 0 2) (1 1 0)	2 2 4	-11.81 -18.48 -71.48	1.00 1.56 6.05	55.41 34.44 2.43
	$(0\ 1\ 1)$ $(1\ 1\ -1)$	4 4	-71.48 -71.48	6.05 6.05	3.87 3.86
Salt 10	(<i>hkl</i>)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	(0 0 1) (0 1 1) (1 0 1) (1 0 0)	2 2 2 2	-6.59 -11.19 -30.13 -31.06	1.00 1.70 4.57 4.71	54.50 33.04 6.98 5.48
Salt 11	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	(0 1 0)(0 0 1)(1 0 1)(0 1 -1)(1 0 0)(1 -1 0)	2 2 2 2 2 2 2	-20.20 -20.53 -23.63 -27.57 -31.60 -36.46	1.00 1.02 1.17 1.36 1.56 1.80	32.85 30.15 19.37 3.24 10.16 4.24
Salt 12	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	(0 2 0) (0 1 1) (0 2 1) (1 1 0)	2 4 4 2	-7.06 -61.83 -34.96 -44.82	1.00 8.76 4.95 6.35	74.70 5.64 12.93 6.73
Salt 13	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	Rhkl	S_{rel} (%)
	$(0 \ 0 \ 2) \\(1 \ 1 \ 2) \\(1 \ 1 \ 1) \\(1 \ 1 \ 0) \\(0 \ 2 \ 0)$	2 4 4 4 2	-33.00 -48.88 -50.95 -53.03 -68.91	1.00 1.48 1.54 1.61 2.09	38.63 9.93 11.28 34.10 6.06
Salt 14	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	$\begin{array}{c} (0 \ 0 \ 1) \\ (0 \ 1 \ -2) \\ (0 \ 1 \ -1) \\ (1 \ 0 \ 0) \\ (1 \ 0 \ -1) \\ (1 \ -1 \ 1) \\ (1 \ -1 \ 0) \end{array}$	2 2 2 2 2 2 2 2 2 2	-21.55 -24.11 -27.49 -48.24 -54.12 -54.48 -60.83	1.00 1.12 1.28 2.24 2.51 2.53 2.82	38.45 16.47 24.15 15.97 3.19 0.47 1.31
Salt 15	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	$\begin{array}{c} (0 \ 0 \ 1) \\ (1 \ -1 \ -1) \\ (0 \ 1 \ 0) \\ (0 \ 1 \ 1) \\ (1 \ 0 \ 0) \\ (1 \ 0 \ -1) \end{array}$	2 2 2 2 2 2 2	-21.21 -22.78 -27.64 -28.23 -30.43 -35.92	1.00 1.07 1.30 1.33 1.43 1.69	31.67 22.83 21.59 4.58 14.89 4.44
Salt 16	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	(2 0 0) (2 0 -2) (0 0 2) (1 1 1) (1 1 -1)	2 2 2 4 4	-76.58 -87.87 -104.82 -296.08 -316.97	1.00 1.15 1.37 3.87 4.14	42.55 33.68 10.52 12.23 1.02

Salt 17	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	(0 1 1) (0 2 0) (1 0 0)	4 2 2	-41.43 -49.94 -82.07	1.00 1.21 1.98	64.15 15.07 20.78
Salt 18	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	(1 0 -1) (0 0 2) (0 1 1)	2 2 4	-13.64 -33.47 -36.04	1.00 2.45 2.64	56.36 13.86 29.78
Salt 19	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	(0 0 2) (1 0 -1) (1 0 1) (0 1 1)	2 2 2 4	-62.10 -76.24 -81.97 -89.62	1.00 1.23 1.32 1.44	30.42 22.57 15.63 31.38
Salt 20	(hkl)	Multiplicity	$E_{\rm att}$ (kJ mol ⁻¹)	R_{hkl}	S_{rel} (%)
	$\begin{array}{c} (0 \ 0 \ 1) \\ (1 \ 1 \ 0) \\ (1 \ 0 \ 0) \\ (1 \ 1 \ 1) \\ (1 \ 0 \ 1) \\ (0 \ 1 \ 0) \end{array}$	2 2 2 2 2 2 2 2	-19.02 -23.54 -25.14 -30.27 -31.87 -36.38	1.00 1.24 1.32 1.59 1.68 1.91	38.24 19.99 20.90 3.62 4.93 12.33

Table S4. Decomposition schemes for the studied energetic salts according to the H₂O-CO₂ arbitrary.

Salt	The H ₂ O–CO ₂ arbitrary equation
1	$C_2H_8N_{10}O_4 = 2C + 4H_2O + 5N_2$
2	$C_2H_8N_{10}O_2 = C + CH_4 + 2H_2O + 5N_2$
3	$2C_2H_{10}N_{12}O_2 = C + 3CH_4 + 4H_2O + 12N_2$
4	$C_4H_{12}N_{14}O_2 = 2C + 2CH_4 + 2H_2O + 7N_2$
5	$2C_4H_{14}N_{16}O_2 = 3C + 5CH_4 + 4H_2O + 16N_2$
6	$2C_{3}H_{12}N_{14}O_{3} = 3C + 3CH_{4} + 6H_{2}O + 14N_{2}$
7	$2C_{3}H_{10}N_{12}O_{4} = 5C + CH_{4} + 8H_{2}O + 12N_{2}$
8	$2C_6H_{14}N_{16}O_6 = 11C + CH_4 + 12H_2O + 16N_2$
9	$C_4H_{12}N_{12}O_6 = 4C + 6H_2O + 6N_2$
10	$C_4H_8N_{16}O_2 = 3C + CH_4 + 2H_2O + 8N_2$
11	$4C_{3}H_{11}N_{13}O_{3} = 7C + 5CH_{4} + 12H_{2}O + 26N_{2}$
12	$4C_{3}H_{11}N_{13}O_{6} = 11C + CO_{2} + 22H_{2}O + 26N_{2}$
13	$4C_3H_5N_{13}O_2 = 11C + CH_4 + 8H_2O + 26N_2$
14	$4C_4H_7N_{13}O_2 = 13C + 3CH_4 + 8H_2O + 26N_2$
15	$2C_{3}H_{6}N_{14}O_{2} = 5C + CH_{4} + 4H_{2}O + 14N_{2}$
16	$C_6H_{12}N_{18}O_2 = 4C + 2CH_4 + 2H_2O + 9N_2$
17	$C_2H_4N_8O_2 = 2C + 2H_2O + 4N_2$
18	$2C_2H_8N_{10}O_3 = 3C + CH_4 + 6H_2O + 10N_2$
19	$C_3H_8N_{12}O_2 = 2C + CH_4 + 2H_2O + 6N_2$
20	$C_{3}H_{10}N_{14}O = C + 2CH_{4} + H_{2}O + 7N_{2}$

Fig. S3. Separate correlation of decomposition temperature (a), crystal habit sphericity (b) with impact sensitivity and function Ω with friction sensitivity (c).