Supplementary Material for: Streams, cascades, and pools: Various water cluster motifs in structurally similar Ni(II) complexes

Nina Saraei,¹ Oleksandr Hietsoi,¹ Christopher S. Mullins,¹ Alexander J. Gupta,² Brian C. Frye,¹ Mark S. Mashuta,¹ Robert M. Buchanan,¹* Craig A. Grapperhaus¹*

¹Department of Chemistry, University of Louisville, Louisville, 40292, USA ²Department of Chemical Engineering, University of Louisville, Louisville, 40292, USA

Table of Contents

Figure S1. ¹ H NMR of HL ¹ : (DMSO - D ₆), 400 MHz) δ 2.05 (br, 2H), 2.63 (t, 2H), 3.28 (t, 2H), 3.98 (s, 3H), 6.82 (d, 1H), 6.88 (d, 1H), 8.14 (s, 1H). The small peak labeled x results from tautomerization of the amido proton (d). Addition of D ₂ O results in the loss of this peak.	ie 53
Figure S2. ¹ H NMR of H ₂ L ³ :	53
Figure S3. ¹ H NMR of NiL ³ (2): (CD ₃ OD, 400 MHz) δ 1.18 (s, 1H), 2.16-3.45 (m, 8H), 3.78 (s, 3H), 6.2 (d, 1H).	29 54
Figure S4. ¹ H NMR of NiL ⁴ (4): (C ₃ D ₆ O, 400 MHz) δ 1.77 (s, 3H), 1.90 (s, 3H), 2.84 (t, 2H), 3.41 (t, 2H), 3.92 (s, 3H), 4.98 (s, 1H), 6.61 (d, 1H), 7.05 (d, 1H).	54
Figure S5. ¹ H NMR of NiL ⁵ (5): (CDCl ₃ , 400 MHz) δ 1.78 (s, 3H), 1.82 (s, 3H), 2.92 (t, 2H), 3.45 (t, 3H), 3.88 (s, 3H), 4.86 (s, 1H), 6.62 (d, 1H), 6.64 (d, 1H).	35
Figure S6. UV-Vis spectrum of NiL ³ (2) in CH ₃ CN.	35
Figure S7. UV-Vis spectrum of $Ni(L^1)_2$ (3) in CH_2Cl_2	56
Figure S8. UV-Vis spectrum of NiL ⁴ (4) in CH ₃ CN.	56
Figure S9. UV-Vis spectrum of NiL ⁵ (5) in CH_3CN .	57
Table S1. Selected stretches (cm ⁻¹) in FT-IR spectra of HL ¹ and 1-5	57
Figure S10. FT-IR spectrum of HL ¹	38
Figure S11. FT-IR spectrum of NiL ² (1).	38
Figure S12. FT-IR spectrum of NiL ³ (2).	39
Figure S13. FT-IR spectrum of $Ni(L^1)_2$ (3).	39
Figure S14. FT-IR spectrum of NiL ⁴ (4).	10
Figure S15. FT-IR spectrum of NiL ⁵ (5).	10
Figure S16. MALDI of NiL ³ (2)Si	11
Figure S17. MALDI of $Ni(L^1)_2$ (3)S	11
Figure S18. MALDI of NiL ⁴ (4)Si	12
Figure S19. MALDI of NiL ⁵ (5)Si	12
Figure S20. Unit cell diagram of NiL ³ (2)Si	13
Figure S21. Unit cell diagram of Ni(L ¹) ₂ (3).	13

Figure S22. Unit cell diagram of NiL ⁴ (4)S1	4
Figure S23. Unit cell diagram of NiL ⁵ (5)	4
Figure S24. TGA of NiL ² (1)	5
Figure S25. DSC of NiL ² (1)	5
Figure S26. TGA of NiL ³ (2)	6
Figure S27. DSC of NiL ³ (2)	6
Figure S28. TGA of NiL ⁴ (4)	7
Figure S29. DSC of NiL ⁴ (4)	7
Figure S30. TGA of NiL ⁵ (5)	8
Figure S31. DSC of NiL ⁵ (5)	8
Figure S32. C ² ₂ (12) HB motif in Ni(L ¹) ₂ (3)S1	9
Figure S33. Bode representations of EIS data for 22 μ F capacitor control (A), complexes 1 (B), 4 (C), and 5 (D). Shows the phase angle and impedance behavior as a function of frequency. The inverse relation between Z and frequency and constant ~90 ° phase angles in all four plots are characteristics of capacitors.	9
Table S2. Capacitances (with associated chi-squared values) and Z' at 100 kHz (indicative of equivalent series resistance) for the capacitor control and complexes 1 , 4 , and 5 at various applied DC biases. Also depicted is the equivalent circuit model used to fit EIS data and determine capacitance	.0
Figure S34. Nyquist representations of EIS data for 22 μ F capacitor control (A), complexes 1 (B), 4 (C), and 5 (D). Data in B, C, and D were truncated at -Z'' = 80,000 Ω to illustrate similarities with (A) and omit the diffusion-related noise observed at low frequencies	:1

Figure S1. ¹H NMR of HL¹: (DMSO - D_6), 400 MHz) δ 2.05 (br, 2H), 2.63 (t, 2H), 3.28 (t, 2H), 3.98 (s, 3H), 6.82 (d, 1H), 6.88 (d, 1H), 8.14 (s, 1H). The small peak labeled x results from tautomerization of the amido proton (d). Addition of D_2O results in the loss of this peak.

Figure S2. ¹H NMR of H_2L^3 : (C₆D₆, 400 MHz) δ 1.35 (br, 1H), 2.3-2.7 (m, 6H), 3.2-3.5 (m, 3H), 3.68 (s, 3H), 6.32 (d, 1H), 6.92 (d, 1H), 8.08 (s, 1H). The small peak labeled x results from tautomerization of the amido proton (g). Addition of D₂O results in the loss of this peak.

Figure S3. ¹H NMR of NiL³ (**2**): (CD₃OD, 400 MHz) δ 1.18 (s, 1H), 2.16-3.45 (m, 8H), 3.78 (s, 3H), 6.29 (d, 1H), 6.92 (d, 1H).

Figure S4. ¹H NMR of NiL⁴ (**4**): (C₃D₆O, 400 MHz) δ 1.77 (s, 3H), 1.90 (s, 3H), 2.84 (t, 2H), 3.41 (t, 2H), 3.92 (s, 3H), 4.98 (s, 1H), 6.61 (d, 1H), 7.05 (d, 1H).

Figure S5. ¹H NMR of NiL⁵ (**5**): (CDCl₃, 400 MHz) δ 1.78 (s, 3H), 1.82 (s, 3H), 2.92 (t, 2H), 3.45 (t, 3H), 3.88 (s, 3H), 4.86 (s, 1H), 6.62 (d, 1H), 6.64 (d, 1H).

Figure S6. UV-Vis spectrum of NiL³ (2) in CH₃CN.

Figure S7. UV-Vis spectrum of $Ni(L^1)_2$ (**3**) in CH_2Cl_2 .

Figure S8. UV-Vis spectrum of NiL^4 (4) in CH_3CN .

Figure S9. UV-Vis spectrum of NiL⁵ (5) in CH₃CN.

Table S1. Selected stretches (cm⁻¹) in FT-IR spectra of HL¹ and 1-5

Moiety	HL^{1}	1	2	3	4	5
C = 0	1670	1660	1660	1590	1610	1590
C - N	1544	1540	1540	1510	1510	1510

Figure S10. FT-IR spectrum of HL¹.

Figure S11. FT-IR spectrum of NiL^2 (1).

Figure S12. FT-IR spectrum of NiL³ (2).

Figure S13. FT-IR spectrum of $Ni(L^1)_2$ (3).

Figure S14. FT-IR spectrum of NiL^4 (4).

Figure S15. FT-IR spectrum of NiL⁵ (5).

Figure S16. MALDI of NiL³ (2).

Figure S17. MALDI of $Ni(L^1)_2$ (3).

Figure S18. MALDI of NiL⁴ (4).

Figure S19. MALDI of NiL⁵ (5).

Figure S20. Unit cell diagram of NiL³ (2).

Figure S21. Unit cell diagram of $Ni(L^1)_2$ (3).

Figure S22. Unit cell diagram of NiL⁴ (4).

Figure S23. Unit cell diagram of NiL^5 (5).

Figure S24. TGA of NiL² (1).

Figure S25. DSC of $NiL^2(1)$.

Figure S26. TGA of NiL³ (2).

Figure S27. DSC of NiL³ (2).

Figure S28. TGA of NiL⁴ (4).

Figure S29. DSC of NiL^4 (4).

Figure S30. TGA of NiL⁵ (**5**).

Figure S31. DSC of NiL⁵ (**5**).

Figure S32. $C^{2}_{2}(12)$ HB motif in Ni(L¹)₂ (3).

Figure S33. Bode representations of EIS data for 22 μ F capacitor control (A), complexes 1 (B), 4 (C), and 5 (D). Shows the phase angle and impedance behavior as a function of frequency. The inverse relation between Z and frequency and constant ~90 ° phase angles in all four plots are characteristics of capacitors..

Table S2. Capacitances (with associated chi-squared values) and Z' at 100 kHz (indicative of equivalent series resistance) for the capacitor control and complexes 1, 4, and 5 at various applied DC biases. Also depicted is the equivalent circuit model used to fit EIS data and determine capacitance.

Sample	DC Bias	Circuit	Chi-	Capacitance	Z' @ 100 kHz
	(V)		Squared	(F)	(Ω)
Capacitor	-0.1		1E-20	2.08E-07	3.84
	0		1E-20	2.08E-07	3.82
	0.1		1E-20	2.07E-07	6.63
Complex	-0.1		1E-20	1.31E-10	1346.88
1	0		1E-20	1.25E-10	729.26
	0.1	C1	1E-20	1.30E-10	984.91
Complex	-0.1		1E-20	1.07E-10	659.57
4	0		1E-20	1.12E-10	650.04
	0.1		1E-20	1.07E-10	637.31
Complex	-0.1		1E-20	1.23E-10	512.69
5	0]	1E-20	1.27E-10	577.06
	0.1		1E-20	1.33E-10	529.32

Figure S34. Nyquist representations of EIS data for 22 μ F capacitor control (A), complexes 1 (B), 4 (C), and 5 (D). Data in B, C, and D were truncated at -Z'' = 80,000 Ω to illustrate similarities with (A) and omit the diffusion-related noise observed at low frequencies.