Supplementary material for

Controllable growth of two-dimensional WSe₂ using salt as co-solvent

Xiangzhuo Wang,¹ Yongkai Li,¹ La Zhuo,¹ Jingchuan Zheng,¹ Xianglin Peng,¹ Zefeng Jiao,¹ Xiaolu Xiong,^{1,2} Junfeng Han,^{1,2,a)} and Wende Xiao^{1,2,a)}

¹School of Physics, Beijing Institute of Technology, 100081, Beijing

²Micronano Center, Beijing Institute of Technology, Beijing, 100081, China

^{a)} To whom correspondence should be addressed. E-mail: pkuhjf@bit.edu.cn (J.F.H.); wdxiao@bit.edu.cn (W.D.X.)

Fig. S1 OM images showing the coexistence of monolayer, bilayer and multilayers in the WSe₂ flakes. (a) overview. (b) zoom-in of (a). Scale bars, 10 μ m.

Fig. S2 Raman spectra collected from the regions of the 2D WSe_2 with different thickness shown in Fig. S1.

Fig. S3 Raman spectra collected from the regions of the 2D WSe_2 with different thickness shown in Fig. S1.

Fig. S4 PL spectra collected from the regions of the 2D WSe₂ with different thickness shown in Fig. S1.

Fig. S5 XPS spectra of the as-grown 2D WSe₂. (a) survey scan, (b) C1s, (c) Na1s, and (d) Cl2p.

Fig. S6 OM image of 2D WSe₂ flakes grown by CVD without NaCl. Optimized parameters: (a) mass (WO₃); (b) reaction temperature T; (c) reaction time t; and (d) gas flow. Scale bars, $10 \mu m$.

Fig. S7 OM image of 2D WSe₂ flakes grown by CVD with NaCl. Optimized parameters: (a) mass (WO₃) : mass (NaCl); (b) mass (Se); (c) growth pressure. Scale bars, $10 \mu m$.

Fig. S8 Raman spectra collected from the regions of a WSe_2 flake with a spiral dislocation shown in Fig. 4(c).

Fig. S9 PL spectra collected from the regions of a WSe_2 flake with a spiral dislocation shown in Fig. 4(c).

Fig. S10 XRD patterns from the WSe_2 spiral dislocation and WSe_2 multilayer. (a) XRD patterns of WSe_2 and Si substrate. (b) XRD patterns of WSe_2 . (c) Normalized intensities of the (002) diffraction peaks, respectively.

The crystal structures of samples were characterized using X-ray diffraction as shown in Fig S10. Fig. S10(a) shows two major diffraction peaks of (002) and (400) appearing in both WSe₂ and Si, which is consistent with the standard values of WSe₂ (JCPDS card 38-1388) and Si substrate (JCPDS card 27-1402). For the 2D WSe₂ with spiral dislocations, the diffraction peaks of (002), (004) and (008) show no significant change with respect to WSe₂ multilayer, indicating that the crystal phase of WSe₂ is not destroyed with spiral dislocation, as shown in Fig. S10(b). Fig. S10(c) shows the half-width of (002) direction. The slight broadening of the diffraction peaks is caused by the spiral dislocation structure.