ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Title:

Indirect effect of the hydrogen bonds on the magnetic coupling on Mn(III) dinuclear compounds

Authors:

J. M. Pagès,^a L. Escriche-Tur,^a M. Font-Bardia,^{b,c} G. Aullón^{a,d*} and M. Corbella^{a,e*}

- ^{a.} Departament de Química Inorgànica i Orgànica (Secció Química Inorgànica), Facultat de Química. Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.
- ^{b.} Departament de Mineralogia, Petrologia i Geologia Aplicada. Facultat de Ciències de la Terra. Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona, Spain.
- ^{c.} Unitat de Difracció de RX. Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB). Universitat de Barcelona. Solé i Sabarís 1-3. 08028-Barcelona. Spain.
- ^{d.} Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1,08028 Barcelona, Spain
- ^{e.} Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain

Corresponding author

- *Montserrat Corbella, e-mail: montse.corbella@ub.edu.
- *Gabriel Aullón, e-mail: gabriel.aullon@qi.ub.es

Content:

Figure S1. Arrangement of the nitrate ions on compound 2	2
Table TS1. Magneto-structural parameters for Mn(III) dinuclear compounds	3
Table TS2. Results of the DFT calculations for compound 1 and the models derived from it	. 4
Table TS3. Results of the DFT calculations for compound 2 and the models derived from it	5
Table TS4. X-ray crystallographic data details for compounds 1 and 2	6
Bibliography	7

Figure S1. View of the disposition of the planes containing coordinated and non-coordinated nitrate ions for compound **2**.

	Ref.	<i>n</i> -R	NN	х	L	J ^a / cm ⁻¹	Mn–O–Mn / °	n−O−Mn /° Δ [♭]		ω ^d /°	τ ^ε /°	Mn–O–N / °	γ ^f /°
2	*	2,6-Cl ₂	bpy	NO₃	H ₂ O/NO ₃	-27.3	123.7	12.6	4.1	75.1	90.0	118	33
	1	2-Cl	Phen	CIO_4	H ₂ O/H ₂ O	-12.6	122.9	11.2	4.5	77.9	88.3		
	2	2-Cl	Вру	CIO_4	H ₂ O/ClO ₄ (3/1)	-10.9	122.8	13.3	3.5	56.5	92.6		
1	*	2,6-Cl ₂	bpy	CIO_4	H_2O/CIO_4	-9.2	124.4	12.6	4.7	73.0	106.2		
	3	2-Me	Вру	CIO_4	H ₂ O/ClO ₄	-5.6	122.3	13.8	3.7	46.9	101.1		
	3	2-F	Вру	CIO_4	H_2O/CIO_4	-3.5	124.4	12.7	4.8	19.5	93.6		
	4	2-MeO	Вру	NO ₃	H ₂ O/NO ₃	-2.3	123.5	10.8	5.0	36.2	78.1	140	87
	4	2-MeO	Вру	CIO_4	H ₂ O/ClO ₄	-0.7	122.8	12.2	4.4	29.2	95.2		
	3	2-Me	Вру	NO ₃	H ₂ O/NO ₃	-0.5	.5 123.1		4.2	28.8	97.2	120	30
	2	2-Cl	Phen	-	NO3/NO3	-0.3	-0.3 124.4		4.7	38.1	101.7	127	47
	3	2-F	Вру	NO₃	H ₂ O/NO ₃	+1.4 125.1		11.2	5.0	18.6	89.2	138	89
	1	2-Cl	Phen	CIO_4	H_2O/H_2O	+2.7	122.9	9.7	4.9	46	102		
	2	2-Cl	Вру	NO ₃	H ₂ O/NO ₃	+3.0	123.0	9.4	5.4	25.4	108.5	126	77
	5	2-COOH	Вру	NO₃	H ₂ O/NO ₃ (3/1)	+4.7	123.5	11.2	4.6	19.9	96.4	122	40
	6	2-Br	phen	NO₃	H_2O/NO_3	+11.8	124.2	-7.7	-1.6	50.5	96.3	128	69
	7	3-MeO	Вру	CIO_4	H ₂ O/ClO ₄	+0.5	123.9	12.8	4.4	10.7	102.3		
	7	3-MeO	Вру	NO₃	H ₂ O/NO ₃	+1.3	124.7	11.8	5.2	11.8	92.8	134	87
	7	3-MeO	Вру	NO₃	NO3/NO3	+1.8	124.5	12.4	4.2	16.9	117.2	131	84
	8	3-Cl	Phen	CIO_4	H ₂ O/H ₂ O	+5.7	121.0	11.6	4.7	3.9	120.6		
	8	3-Cl	Вру	NO₃	H ₂ O/H ₂ O	+11.8	122.4	9.0	5.4	5.8	112.7		
	7	4-tBu	Вру	CIO_4	EtOH/ClO ₄	-16.0	120.8	13.2	4.1	3.8	73.7		
	9	4-Br	Вру	CIO_4	EtOH/ClO ₄	-6.8	122.8	14.6	4.0	10.7	94.1		
	7	4-MeO	Вру	CIO_4	EtOH/ClO ₄	-5.2	123.5	15.6	3.5	11.7	95.5		
	6	4-Me	phen	CIO_4	H_2O/H_2O	-1.8	122.2	10.3	4.8	2.9	83.8		
	9	4-Cl	Phen	CIO_4	EtOH/EtOH	0	122.1	11.1	4.1	6.7	88.9		
	10	4-F	Вру	NO₃	H ₂ O/H ₂ O	+1.4	124.4	10.0	5.1	9.3	99		
	10	4-Me	Вру	NO ₃	H_2O/H_2O	+1.5	122.1	10.9	4.4	7.3	112		
	11	н	bpy	NO₃	OH/NO₃	+2.0	124.1	10.8	5.3	10.2	94.9	130	88
	10	4-CF ₃	Вру	NO₃	H_2O/H_2O	+5.7	122.2	10.6	4.2	7.5	116		
	12	Н	Вру	-	N ₃ /N ₃	+17.6	122.0	5.3	7.4	5.0	108.1		

Table TS1. Magnetic coupling constants *J* and selected structural parameters for $[{Mn(L)(NN)}_2(\mu-O)(\mu-n-RC_6H_nCOO)_2]X_2$ compounds (n = 4 for monosubstituted carboxylates and n = 3 for 1 and 2).

* This work ;^{*a*} $H = -J \cdot (S_1 \cdot S_2)$; ^{*b*} average Elongation (Eq. 1): $\Delta = (z - \overline{xy}) / \overline{xy}$, $\overline{xy} = (x + y)/2$; ^{*b*} average rombicity: $\rho = (y - x) / x$; ^{*d*} average O-C_{carb}-C_{ar}-C_{ar}' angle; ^{*e*} relative orientation of the O_h: L-Mn···Mn-L angle; ^{*f*} angle between the equatorial plane of the octahedron N₂O₂ and the NO₃ plane; abbreviations: bpy = 2,2'-bipyridine, phen = 1,10-phenantroline.

Table TS2. Magnetic interaction (J_{cal}), charge (Q) and charge loss (ΔQ) on the perchlorate anions (X), the water ligands (Lw) and in the two manganese ions of the complex (Mn_w and Mn_{cl}), for different models based on the crystallographic data of [{Mn(bpy)(H₂O)}(μ -2,6-Cl₂C₆H₃COO)₂(μ -O){Mn(bpy)(ClO₄)}]ClO₄ (**1**) (Mn-w···(ClO₄)_{1/2}···w'-Mn'). A scheme for the frame work units in each model is shown in Table 5. ($H = -JS_1 \cdot S_2$)

	х	J _{cal} /cm ⁻¹	Q (X1) /me	Q (X ₂) /me	Q (L _w) /me	∆Q (2X+w) ∕me	Q (w') /me	∆Q (2X+2w) /me	Q (Mn _w) /me	Q (Mn _{cl}) /me
1A	w∙None	-19.9	-	-	-		72	72	1563	1545
1B	w·ClO ₄ ⁻	-16.7	-963	-	-	37	68	105	1553	1562
1C	w·ClO ₄ -	-16.5	-	-975	-	25	63	88	1546	1561
1D	w∙(ClO₄ [−])₂	-13.5	-964	-978	-	58	65	123	1556	1554
1E	w∙(ClO₄ [−])₂∙W	-13.1	-956	-963	-26	55	67	122	1556	1555
1…1 ,	w·(ClO₄ [−])₂·w′	-14.5	-953	-953	+61	(155)/2	61	(216)/2	1554	1559

Table TS3. Magnetic exchange (J_{cal}), charge (Q) and charge loss (ΔQ) and spin density (ρ) on the extra bridge, and charge in the two manganese ions of the complex and the monodentate ligands, for different models based on the crystallographic data of [{Mn(bpy)(H₂O)}(μ -2,6-Cl₂C₆H₃COO)₂(μ -O){Mn(bpy)(NO₃)}]NO₃·H₂O·CH₃CN (**2**·H₂O·CH₃CN) (Mn-L_N···W···X···L_W-Mn). A scheme for the frame work units in each model is shown in Table 6. ($H = -JS_1 \cdot S_2$)

	х	J _{cal} /cm ⁻¹	Q (X) /me	⊿Q (X) /me	Q (W) /me	⊿Q (X+W) /me	Q (X+W) /me	ρ (X) /me	ρ (W) /me	<i>Q</i> (L _N) /me	Q (L _w) /me	Q (Mn) _w /me	Q (Mn) _N /me
2A	None	-31.3								-850	76	1543	1557
2B	MeNO ₂	-31.2	23	23	-10	13	13	0	0	-846	54	1553	1554
2C	HONO ₂	-31.1	19	19	-9	10	10	0	0	-849	61	1555	1554
2D	NO ₂ ⁻	-28.6	-858	142	-19	123	-877	67	0	-848	55	1545	1552
2	ONO ₂ ⁻	-27.6	-943	57	-15	42	-958	1	0	-849	59	1556	1547
2E	HOCO₂ [−]	-26.5	-939	61	-13	48	-952	1	0	-848	58	1558	1544
2F	MeCO ₂ ⁻	-26.3	-923	77	-14	63	-937	3	0	-846	48	1558	1544

Table TS4. X-ray crystallographic data collection and structure refinement details for compounds $[{Mn(bpy)(H_2O)}(\mu-2,6-Cl_2C_6H_3COO)_2(\mu-O){Mn(bpy)(ClO_4)}]ClO_4$ (1) and $[{Mn(bpy)(H_2O)}(\mu-2,6-Cl_2C_6H_3COO)_2(\mu-O){Mn(bpy)(NO_3)}]NO_3 + H_2O + CH_3CN (2 + H_2O + CH_3CN).$

	1	2 11 0 011 011
	L	
chemical formula	$C_{34}H_{24}Cl_6Mn_2N_4O_{14}$	$C_{36}H_{26}Cl_4Mn_2N_7O_{13}$
formula weight /g mol-1	1035.15	1016.32
Т / К	293	100
λ (Mo Kα) / Å	0.71073	0.71073
crystal system	P21/c (No. 14)	Pca21(№21)
space group	Monoclinic	Orthorhombic
a / Å	11.693(2)	18.6545(12)
<i>b</i> / Å	39.642(8)	14.0357(8)
c / Å	9.7135(18)	15.6154(10)
eta / deg.	111.005(7)	
V / Å ³	4203.3(14)	4088.6(4)
Z	4	4
$ ho_{ m calcd}$ / g cm ⁻³	1.636	1.651
μ / mm ⁻¹	1.051	0.934
Absorption coefficient / mm ⁻¹	1.051	0.934
F(000)	2080	2052
Crystal size /mm	0.344 x 0.090 x 0.056	0.534 x 0.248 x 0.153
O range / deg.	1.9 to 28.4	2.5 to 27.2
limiting indices	$-14 \le h \le 15, -52 \le k \le 52, -12 \le l \le 12$	$-23 \le h \le 23, -18 \le k \le 17, -20 \le l \le 16$
Independent reflections	88576 / 10480 [<i>R</i> (int) = 0.0573]	17365/7592 [<i>R</i> (int) = 0.0517]
Completeness to theta / %	99.7	98.5
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.7457 and 0.6807	0.7455 and 0.5728
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
data / restraints / parameters	10480 / 95 / 649	7592 / 14 / 530
goodness-of-fit on F ²	1.057	1.084
final <i>R</i> indices $[I>2\sigma(I)]$	$R_1 = 0.0497, wR_2 = 0.1198$	$R_1 = 0.0700, wR_2 = 0.1856$
R indices (all data)	$R_1 = 0.0637, wR_2 = 0.1266$	$R_1 = 0.0753, wR_2 = 0.1907$

^a $R1 = \sum (|F_o| - |F_c|) / \sum |F_o|$. ^b $\omega R2 = \{\sum [\omega(F_o^2 - F_c^2)^2] / \sum [\omega(F_o^2)^2] \}^{1/2}$, $\omega = 1 / [\sigma^2(F_o^2) + (0.0675P)^2 + 1.4805P]$, where $P = (F_o^2 + 2F_c^2) / 3$.

Bibliography

- Gómez, V.; Corbella, M.; Aullón, G. Two Temperature-Independent Spinomers of the Dinuclear Mn(III) Compound [{Mn(H₂O)(Phen)}₂(μ-2-ClC₆H₄COO)₂(μ-O)](ClO₄)₂. *Inorg. Chem.* **2010**, *49* (4), 1471–1480 DOI: 10.1021/ic901719t.
- (2) Gómez, V.; Corbella, M.; Roubeau, O.; Teat, S. J. Magneto-Structural Correlations in Dinuclear Mn(III) Compounds with Formula [{Mn(L)(NN)}(μ-O)(μ-2-RC₆H₄COO)₂{Mn(L')(NN)}]ⁿ⁺. Dalton Trans. **2011**, 40 (44), 11968 DOI: 10.1039/c1dt11242b.
- (3) Fernández, G.; Corbella, M.; Aullón, G.; Maestro, M. a.; Mahía, J. New Dinuclear MnIII Compounds with 2-MeC₆H₄COO and 2-FC₆H₄COO Bridges Effect of Terminal Monodentate Ligands (H₂O, ClO₄⁻ and NO₃⁻) on the Magnetic Properties. *Eur. J. Inorg. Chem.* **2007**, *3* (9), 1285–1296 DOI: 10.1002/ejic.200600708.
- Escriche-Tur, L.; Corbella, M.; Font-Bardia, M.; Castro, I.; Bonneviot, L.; Albela, B. Biomimetic Mn-Catalases Based on Dimeric Manganese Complexes in Mesoporous Silica for Potential Antioxidant Agent. *Inorg. Chem.* 2015, 54 (21), 10111–10125 DOI: 10.1021/acs.inorgchem.5b01425.
- (5) Chen, C.; Zhu, H.; Huang, D.; Wen, T.; Liu, Q.; Liao, D.; Cui, J. Syntheses, Structures and Magnetic Properties of Monoand Di-Manganese Inclusion Compounds. *Inorg. Chim. Acta* 2001, 320 (1–2), 159–166 DOI: 10.1016/S0020-1693(01)00489-3.
- (6) Garcia-Cirera, B.; Gómez-Coca, S.; Font-Bardia, M.; Ruiz, E.; Corbella, M. Influence of the Disposition of the Anisotropy Axes into the Magnetic Properties of Mn^{III} Dinuclear Compounds with Benzoato Derivative Bridges. *Inorg. Chem.* 2017, 56 (14), 8135–8146 DOI: 10.1021/acs.inorgchem.7b00877.
- (7) Escriche-Tur, L.; Font-Bardia, M.; Albela, B.; Corbella, M. New Insights into the Comprehension of the Magnetic Properties of Dinuclear Mn^{III} Compounds with the General Formula [{MnL(NN)}₂(μ-O)(μ-n-RC₆H₄COO)₂]X₂. Dalton Trans. **2016**, 45 (29), 11753–11764 DOI: 10.1039/C6DT01097K.
- (8) Gómez, V.; Corbella, M. Catalase Activity of Dinuclear Mn^{III} Compounds with Chlorobenzoato Bridges. *Eur. J. Inorg. Chem.* **2012**, *2* (19), 3147–3155 DOI: 10.1002/ejic.201200143.
- (9) Corbella, M.; Gómez, V.; Garcia, B.; Rodriguez, E.; Albela, B.; Maestro, M. a. Synthesis, Crystal Structure and Magnetic Properties of New Dinuclear Mn(III) Compounds with 4-ClC₆H₄COO and 4-BrC₆H₄COO Bridges. *Inorg. Chim. Acta* 2011, 376 (1), 456–462 DOI: 10.1016/j.ica.2011.07.016.
- (10) Corbella, M.; Fernández, G.; González, P.; Maestro, M.; Font-Bardia, M.; Stoeckli-Evans, H. Dinuclear Mn^{III} Compounds [Mn(bpy)(H₂O)₂(μ-4-RC₆H₄COO)₂(μ-O)](NO₃)₂ (R = Me, F, CF₃, MeO, ^tBu): Effect of the R Group on the Magnetic Properties and the Catalase Activity. *Eur. J. Inorg. Chem.* **2012**, *2012* (13), 2203–2212 DOI: 10.1002/ejic.201101433.
- (11) Corbella, M.; Costa, R.; Ribas, J.; Fries, P. H.; Latour, J.-M.; Ohrstrom, L.; Solans, X.; Rodriguez, V. Structural and Magnetization Studies of a New (μ-oxo)bis(μ-carboxylato)dimanganese(III) Complex with a Terminal Hydroxo Ligand. *Inorg. Chem.* **1996**, *35* (7), 1857–1865 DOI: 10.1021/ic950930x.
- (12) Vincent, J. B.; Tsai, H. L.; Blackman, A. G.; Wang, S.; Boyd, P. D. W.; Folting, K.; Huffman, J. C.; Lobkovsky, E. B.; Hendrickson, D. N.; Christou, G. Models of the Manganese Catalase Enzymes. Dinuclear Manganese(III) Complexes with the [Mn₂(μ-O)(μ-O₂CR)₂]²⁺ Core and Terminal Monodentate Ligands: Preparation and Properties of [Mn₂O(O₂CR)₂X₂(Bpy)₂] (X = Chloride, Azide, Water). *J. Am. Chem. Soc.* **1993**, *115* (26), 12353–12361 DOI: 10.1021/ja00079a016.