Supporting information

Understanding of the dissolution-crystallization fabrication strategy towards macro/microporous ZSM-5 single crystals

Yanfei Zhang^{abc}, Xiaomin Zhang^b, Jie Zhang,^{bc} Peidong Li,^{abc} Qiao Han,^{abc} Lei Xu^{b*} and Hongchen Guo^{a*}

a. State Key Laboratory of Fine Chemicals & School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China.

^{b.} National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China;

^{c.} University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

Email: hongchenguo@dlut.edu.cn, xulei808@dicp.ac.cn

Figure S1. SEM image of MASS.

Figure S2. High-resolution TEM (HRTEM) image of HM-ZSM-5(50).

Figure S3. SEM images of samples produced with theoretical Si/Al ratios of 25 (A)

and 150 (B) with OH^{-}/SiO_{2} ratio of 0.155 and crystallization temperature of 383 K.

Figure S4. XRD patterns of the conventional microporous samples conv-ZSM-5(49) and conv-ZSM-5(35).

Figure S5. NH₃ temperature-programmed desorption profiles of hierarchically macro/microporous sample HM-ZSM-5(25) and conventional microporous sample conv-ZSM-5(35).

Sample	Startin	Crystallization		
	OH ⁻ /SiO ₂	Si/Al	TPA ⁺ /SiO ₂	temperature/K
HM-ZSM-5(50)	0.155	50	0.18	383
HM-Z1	0.08	50	0.18	383
HM-Z2	0.13	50	0.18	383
HM-Z3	0.20	50	0.18	383
HM-Z4	0.155	50	0.18	403
HM-Z5	0.155	50	0.18	423
HM-Z6	0.155	50	0.21	423
HM-Z7	0.155	50	0.25	423
HM-Z8	0.155	25	0.18	383
HM-Z9	0.155	150	0.18	383
HM-ZSM-5(25)	0.20	25	0.18	383
HM-ZSM-5(150)	0.15	150	0.18	383

 Table S1. Compositions of synthesis mixtures and synthesis conditions of the ZSM-5
 samples

Sample	Surface area (m ² g ⁻¹)		Pore volume		Acidity by		
				$(cm^3 g^{-1})$		strength (μ mol g ⁻¹)	
	S _{BET} ^a	S _{micro} ^b	\mathbf{S}_{ext}^{b}	$V_{\text{mic}}{}^{b}$	V_{total}^{c}	Weak ^d	Strong ^d
HM-ZSM-5(25) ^[1]	380	285	95	0.13	0.23	342	229
HM-ZSM-5(50) ^[1]	359	238	121	0.11	0.20	216	165
HM-ZSM-5(150) ^[1]	355	233	122	0.11	0.20	69	73
conv-ZSM-5(35)	325	275	50	0.13	0.17	339	247

Table S2. Textural and acidic properties of the samples

^a Surface area determined by BET method.

^b Micropore and external surface areas and micropore volumes determined by *t*-plot method.

^c Total pore volume at $p/p_0 = 0.99$.

^d The quantities of weak an strong acid sites determined by NH₃-TPD profiles.

[1] Zhang Y, Lu P, Yuan Y, et al. One pot synthesis of hierarchically macro/microporous ZSM-5 single crystals. CrystEngComm. 2017, 19(32):4713-4719.