Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2018

> Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Supporting information

Separation of mono-dispersed CH₃NH₃PbBr₃ perovskite quantum dots via dissolution of nanocrystals

Kazuki Umemoto,^a Masaki Takeda,^a Yuki, Tezuka,^a Takayuki Chiba,^{b,c} Matthew Schuette White,^d Tomoko Inose,^e Tsukasa Yoshida,^{a,c} Satoshi Asakura,^f Shuichi Toyouchi,^g Hiroshi Uji-i,*^{e,g} and Akito Masuhara*^{a,c}

- ^{a.} Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan. E-mail: masuhara@yz.yamagata-u.ac.jp
 ^{b.} Graduate School of Organic Materials Science, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
 ^{c.} Research Center for Organic Electronics (ROEL), Yonezawa, Yamagata 992-8510, Japan.
- ^{d.} Department of Physics, University of Vermont, Burlington, VT 05405, USA
- e. Research Institute for Electronic Science (RIES), Hokkaido University, N20W10, Kita-Waird Sapporo, 001-0020, Japan
- ^f ISE Chemicals Corporation, Yaesuguchi Daiei Bldg., 3-1, Kyobashi 1-Chome, Chuo-ku, Tokyo 104-0031, Japan

9- Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven, Celestijnenlaan 200G-F, 3001 Heverlee, Belgium.

hiroshi.ujii@es.hokudai.ac.jp, hiroshi.ujii@kuleuvne.be

*Email: <u>hiroshi.ujii@es.hokudai.ac.jp</u>, <u>hiroshi.ujii@kuleuven.be</u> <u>masuhara@yz.yamagata-u.ac.jp</u>

1. Experimental Section Materials

Lead (II) bromide powder (PbBr₂, 99.999%) and methylammonium (MABr, 98.0%) were purchased from Aldrich and Wako respectively. *N*,*N*-Dimethylformamide, chloroform, and toluene were purchased from Wako Pure Chemical Industries. All the chemicals were used without purification.

Preparation of MAPbBr₃ QDs

MAPbBr₃ QDs were fabricated following the ligand-assisted reprecipitation. 3.6 mg MABr and 14.7 mg PbBr₂ was dissolved in 1 mL of DMF as a good solvent contained 4 μ L of *n*-octylamine and 0.1 mL of oleic acid. 1 ml of precursors solution was dropped into 25 mL of vigorously stirring chloroform as a poor solvent. Obtained dispersions were centrifuged at 9000 rpm for 10 min.

Preparation of size controlled MAPbBr₃ QDs via Ostwald ripening.

3 ml of MAPbBr₃ QDs dispersions were stored into water bathe at the 50°C for 1, 2, 3, 4 hours followed by cloud MAPbBr₃ QDs dispersions were centrifuged at 9000 rpm for 10 min.

Preparation of samples for TEM observation.

Several micro-litres of the MAPbBr₃ QDs dispersions were dropped on Cu TEM grid and dried into vacuum box for overnight.

Preparation of MAPbBr₃ QDs with a membrane filter.

To analyze XRD patterns of MAPbBr₃ QDs, MAPbBr3 QDs with a membrane filter. 12 ml of MAPbBr₃ QDs dispersions were filtered with a membrane filter (pore size is 25 nm) and the filtered solid sample was dried under the vacuum at room temperature.

Characterization

X-ray diffraction (XRD) patterns of the samples were obtained from in-plane diffraction using membrane filters and were measured on a Rigaku Smart Lab (using Cu Kα radiation at 45 kV and 200 mA). The samples were observed by a JEOL JSM-6700F scanning electron microscope (SEM) (accelerating voltage of 10 kV) and a JEOL JEM-2100F transmission electron microscope (TEM) (accelerating voltage of 200 kV). Visible absorption spectra of the samples were obtained on a JASCO V-670 spectrophotometer (detecting wavelength range of 400 to 600 nm). Photoluminescence (PL) spectra of samples were obtained with HORIBA FluoroMax-2 luminescence spectrometer (exciting wavelength of 370 nm and detecting wavelength range of 400 to 600 nm). Photoluminescence quantum yield (PLQY) were measured using a Hamamatsu C9920–01 integral sphere system. Photoluminescence lifetimes were obtained using a Hamamatsu C11367 Quantaurus-Tau.

2. Supporting Results

Figure S1 (a) TEM image, and (b) size distribution histogram of squareshaped MAPbBr₃ PeNCs obtained from supernatant without aging.

Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

FigurFigurSISQISEAgeroageroafgeroa Afgeroa

Figure S32 Size distribution histogram of size-controlled MAPbBr₃ PeNCs, (a) aged for 1 hour, (b) 2 hours.

Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Figure S43 TEM images and size distribution histogram of size-controlled MAPbBr₃ PeQDs, (a) aged for 3 hours, (b) 4 hours.

Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2017

Figure S54 XRD patterns of MAPbBr₃ PeNCs aged for 0, 1, 2, 3, 4 hours, and filter / bulk samples as a reference.

Aging times / h	A1	A2	τ_1 / ns	τ_2 / ns
0	7.8×10^{2}	3.9×10^{2}	9.5	32.2
1	8.3×10^{2}	3.7×10^{2}	9.3	31.1
2	23.9×10^2	19.1 × 10 ²	4.7	10.1
3	28.7×10^2	95.9 × 10 ²	1.6	5.1
4	30.0×10^{2}	99.2 × 10 ²	1.2	5.1

Table S1 PL decay time constants, short-lifetimes, and long lifetimes of MAPbBr3PeNCs dispersions aged for 0 - 4 hours at 50°C.