Supporting Information

Synthesis of core-shell ZIF-67@Co-MOF-74 catalyst with controllable shell thickness and enhanced photocatalytic activity for visible light-driven water oxidation

Changyan Guo, Jia Guo, Yonghong Zhang*, Di Wang, Li Zhang, Yuan Guo, Wenlan Ma and Jide Wang*

1. Experimental

1.1 Materials and Reagents

Cobalt (II) nitrate hemipentahydrate (Co(NO₃)₂• $6H_2O$), 2-methylimidazole (2-MI), 2,5-dihydroxyterephthalic acid (DHTP), 1,4-dicarboxybenzene (H₂BDC), 2aminoterephthalic acid (NH₂-H₂BDC), benzene-1,3,5-tricarboxylic acid (H₃BTC), methanol were purchased from Adamas-beta, Sigma-Aldrich and used as received.

1.2 Synthesis of [Ru(bpy)₃](ClO₄)₂

 $[Ru(bpy)_3](ClO_4)_2$ was synthesized according to reference 2. The 4 M HClO₄ was adding to an aqueous solution of $[Ru(bpy)_3]Cl_2$ and then separated by filtration.

2. N₂ adsorption/desorption isotherms

Figure S1. DFT method pore size distribution of the Co-MOF-74, ZIF-67 and core-shell ZIF-67@Co-MOF-74 catalyst with different shell thickness.

Sample	S _{BET} (m ² ⋅g ⁻¹)	V _{pore} (cm ³ ·g ⁻¹)	Pore size (nm)
ZIF-67	2129	0.72	0.93
ZIF-67@Co-MOF-74 (13:1)	1878	0.71	0.93
ZIF-67@Co-MOF-74 (6:1)	1848	0.71	0.89
ZIF-67@Co-MOF-74 (2:1)	1647	0.70	0.85
Co-MOF-74	882	0.65	0.79

Table S1. Values of the catalyst estimated from the N_2 adsorption/desorption isotherms.

3. Catalytic performance optimization

3.1 Different sodium persulfate concentration

Figure S2 Kinetics of O_2 evolution of the photocatalytic system with core-shell ZIF-67@Co-MOF-74 with different shell thickness as catalysts. Conditions: Xe lamp (1 Z 420 nm, 26.4 mW cm⁻²); catalyst (1 mg); 1.0 mM [Ru(bpy)₃](ClO₄)₂, Na₂S₂O₈ (5/20/60/80/100 mmol/L), and 80 mM sodium borate buffer (initial pH, 9.0); total reaction volume: 10 mL.

Figure S3 Kinetics of O_2 evolution of the photocatalytic system with core-shell ZIF-67@Co-MOF-74 with different shell thickness as catalysts. Conditions: Xe lamp (1 Z 420 nm, 26.4 mW cm⁻²); catalyst (1 mg); 1.0 mM [Ru(bpy)₃](ClO₄)₂, 80.0 mM Na₂S₂O₈, and 80 mM sodium borate buffer (initial pH, 8.0, 9.0, 10.0); total reaction volume: 10 mL.

0.3 mg 0.5 mg 1 mg O₂/µmol Time/min

3.3 The different amount of catalyst

Figure S4 Kinetics of O_2 evolution of the photocatalytic system with ZIF-67, Co-MOF-74 and core-shell ZIF-67@Co-MOF-74 with different shell thickness as catalysts. Conditions: Xe lamp (1 Z 420 nm, 26.4 mW cm⁻²); catalyst (0.3/0.5/1 mg); 1.0 mM [Ru(bpy)₃](ClO₄)₂, 80.0 mM Na₂S₂O₈, and 80 mM sodium borate buffer (initial pH, 9.0); total reaction volume: 10 mL.

4. Stability studies

Figure S5. Kinetics of O₂ formation in the photocatalytic system using core-shell ZIF-67@Co-MOF-74 (2:1) and recovered catalysts. Conditions: Xe lamp (1 Z 420 nm, 26.4 mW cm⁻²); catalyst (0.5 mg); 1.0 mM [Ru(bpy)₃](ClO₄)₂, 80.0 mM Na₂S₂O₈, and 80 mM sodium borate buffer (initial pH, 9.0); total reaction volume: 10 mL.

Figure S6. PXRD of the fresh and reused ZIF-67@Co-MOF-74 (2:1) catalyst.

5. Quantum yield calculation

The initial quantum yield (Φ) of photon-to-oxygen generation was calculated by the expression^[S1-S3]:

AR (the photic area of reactor) =
$$d \cdot h = 2 \times 3.5 \text{ cm}^2 = 7.0 \text{ cm}^2$$

E = 52.8 mW·cm⁻²
P = E ·AR
= 52.8×7.0 mW
= 369.6 mW
Photon flux = $\frac{P\lambda}{hc} = \frac{52.8 \times 10^{-3} \times 7 \times 60 \times 28 \times 420 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 1.3 \,\text{ps}$

10²¹

$$\Phi_{QY \text{ (initial)}} = 2 \times \frac{Number \text{ of evolved } 02 \text{ molecules}}{Number \text{ of absorbed photons}} \times 100 \%$$
$$= \frac{2 \times \frac{122.38 \times 10^{-6} \times 6.02 \times 10^{23}}{1.3 \times 10^{21}} \times 100 \%$$
$$= 11.3\%$$

6. References

[S1] S. Goberna-Ferrón, W. Y. Hernández, B. Rodríguez-García and J. R. Galán-Mascarós, ACS

Catal. **2014**, *4*, 1637–1641.

[S2] F. Song, Y. Ding, B. Ma, C. Wang, Q. Wang, X. Du, S. Fu and J. Song, *Energy Environ. Sci.*2013, 6, 1170–1184.

[S3] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S. T. Lee, J. Zhong, Z. Kang,

Science. 2015, 347, 970-974.