Supporting Information

In situ topotactic synthesis of porous network Zn₂Ti₃O₈ platelike nanoarchitecture and its long-term cycle performance for LIBs anode

Xingang Kong^a*, Xing Wang^a, Dingying Ma^a, Jianfeng Huang^a, Jiayin Li^a, Ting Zhao^a, Lixiong Yin^a,

Qi Feng^{ab}*

^a School of Materials Science and Engineering, Shaanxi University of Science and Technology,

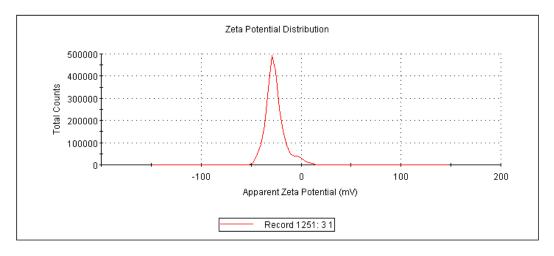
Weiyang, Xi'an, Shaanxi 710021, PR China

^b Department of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20

Hayashi-cho, Takamatsu-shi, 761-0396 Japan

*Author to whom correspondence should be addressed. E-mail: yezhu_1983@163.com, feng@eng.kagawa-u.ac.jp

Sample	Zn/Ti molar ratio
Zn-HTO	0.51:1.73
Product after heat-treatment of Zn-HTO	0.51:1.73
Zn-H ₂ O ₂ -HTO	1.07:1.73
Product after heat-treatment Zn-H ₂ O ₂ -HTO	1.07:1.73


Tab. S1 XRF analysis results of Zn/Ti molar ratio of sample.

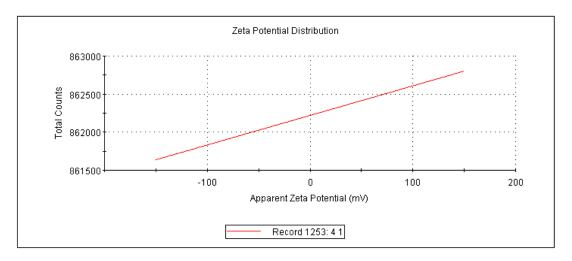
Sample	SampleZeta potential (mV)				
UTO	-581 mV (ethanol system)				
НТО	-26.3 mV (water system)				
	-3.31X10 ⁴ mV (ethanol system)				
H ₂ O ₂ -HTO	-41.9 (water system)				

Sample Name:	31		
SOP Name:	mansettings.nano		
File Name:	Example Results.dts	Dispersant Name:	Water
Record Number:	1251	Dispersant RI:	1.330
Date and Time:	2018年1月24日 19:38:34	Viscosity (cP):	0.8872
		Dispersant Dielectric Constant:	78.5
Temperature (°C):	25.0	Zeta Runs:	12
Count Rate (kcps):	237.1	Measurement Position (mm):	2.00
Cell Description:	Green disposable zeta cell	Attenuator:	8
		Mean (mV) Area (%) St De	v (mV)

Zeta Potential (mV):	-26.3	Peak 1:	-26.3	100.0	9.55
Zeta Deviation (mV):	9.55	Peak 2:	0.00	0.0	0.00
Conductivity (mS/cm):	0.0229	Peak 3:	0.00	0.0	0.00

Result quality : See result quality report

Raw data of Zeta potentials (HTO in water system)

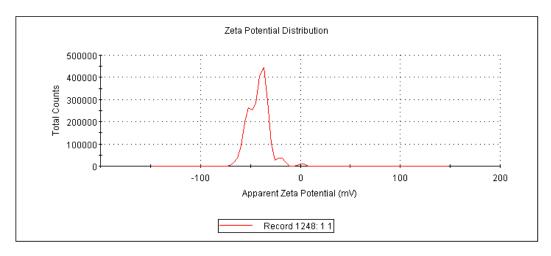

Sample Name:	4 1					
SOP Name:	mansettings.nano					
File Name:	Example Results.d	its		Dispersant	Name:	乙醇
Record Number:	1253 Dispersant RI:				1.480	
Date and Time:	2018年1月24日19	24日 19:42:41 Viscosity (cP):				3.6720
			Disper	sant Dielectric Co	nstant:	0.100
Temperature (°C):	25.0			Zeta	a Runs:	100
Count Rate (kcps):	317.9		Mea	surement Position	ı (mm):	2.00
Cell Description:	Green disposable	zeta cell		Atte	nuator:	7
			Mean (mV)	Area (%)	St De	v (mV)
Zeta Potential (mV):	-581	Peak 1:	0.102	100.0	150	
Zeta Deviation (mV):	1.57e4	Peak 2:	0.00	0.0	0.00	

0.00

 Zeta Deviation (mV):
 1.57e4
 Peak 2:
 0.00
 0.0

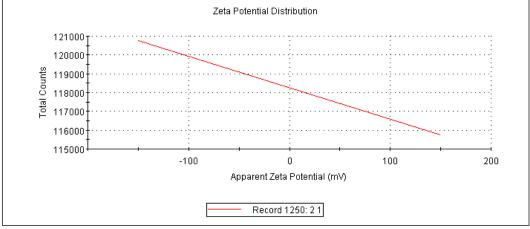
 Conductivity (mS/cm):
 0.00209
 Peak 3:
 0.00
 0.0

Result quality : See result quality report


Raw data of Zeta potentials (HTO in ethanol system)

Sample Name:	11			
SOP Name:	mansettings.nano			
File Name:	Example Results.dts		Dispersant Nar	ne: Water
Record Number:	1248		Dispersant	RI: 1.330
Date and Time:	2018年1月24日 19:29:57		Viscosity (d	P): 0.8872
		Dispersa	nt Dielectric Consta	nt: 78.5
Temperature (°C):	25.0		Zeta Ru	ns: 12
Temperature (°C): Count Rate (kcps):		Measur	Zeta Ru rement Position (m	
Count Rate (kcps):		Measur		m): 2.00
Count Rate (kcps):	205.4	Measu Mean (mV)	rement Position (m Attenuat	m): 2.00

 Zeta Deviation (mV):
 10.4
 Peak 2:
 -53.0
 30.6
 4.64


 Conductivity (mS/cm):
 0.0135
 Peak 3:
 -20.6
 4.1
 3.72

Result quality : See result quality report

Raw data of Zeta potentials (H₂O₂-HTO in water system)

Sample Name:	21					
SOP Name:	mansettings.n	ano				
File Name:	Example Resu	ults.dts		Dispersar	nt Name:	乙醇
Record Number:	1250			Dispe	rsant RI:	1.480
Date and Time:	2018年1月24日	3 19:33:57		Viscos	sity (cP):	3.6720
			Disper	sant Dielectric C	onstant:	0.100
Temperature (°C):	25.0			Ze	ta Runs:	32
Count Rate (kcps):	76.5		Measurement Position (mm):		2.00	
Cell Description:	Green disposa	able zeta cell		Atte	enuator:	6
			Mean (mV)	Area (%)	St De	v (mV)
Zeta Potential (mV):	-3.31e4	Peak 1:	-3.17	100.0	150	
Zeta Deviation (mV):	1.47e4	Peak 2:	0.00	0.0	0.00	
Conductivity (mS/cm):	0.00163	Peak 3:	0.00	0.0	0.00	
Result quality :	Good					

Raw data of Zeta potentials (H₂O₂-HTO in ethanol system)

		1		0 1 7		
Material	Synthesis method	microstructure	Specific capacity (mA h g ⁻¹)	Current density	Active material: Acetylene black: PVDF	References
Zn ₂ Ti ₃ O ₈	H ₂ O ₂ assisted ion-exchange and heat treatment	Nanoarchitecture with porous network structure	423 (100 cycles) 408 (1000 cycles)	100mAh g ⁻¹ 1Ah g ⁻¹	7:2:1	This work
Zn ₂ Ti ₃ O ₈	Ion-exchange and heat treatment	Nanowires	400 (50 cycles)	100mAh g ⁻¹	5:4:1	Hong Z et al^1
Zn ₂ Ti ₃ O ₈	molten-salt method	Nanoparticles	246	100mAh g ⁻¹	8:1:1	Wang J et

Tab. S3 All of literature reports about the discharge capacity of Zn₂Ti₃O₈.

			(450 cycles)			al ²
$Zn_2Ti_3O_8$	Ion-exchange and template method	Hollow spheres	186.2 (300 cycles)	100mAh g ⁻¹	7:2:1	Liao W et al ³

- 1. Z. Hong, M. Wei, Q. Deng, X. Ding, L. Jiang and K. Wei, Chem. Commun., 2010, 46, 740-742.
- 2. W. Liao, J. Tian, Z. Shan, R. Na, L. Cui and H. Lin, *Electrochim. Acta*, 2016, 216, 94-101.
- 3. J. Wang, J. Zhang, Y. Zhang, J. Guo and J. Zhang, J. Alloy. Compd., 2016, 688, 392-398.

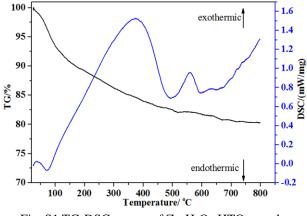


Fig. S1 TG-DSC curves of Zn-H₂O₂-HTO sample.

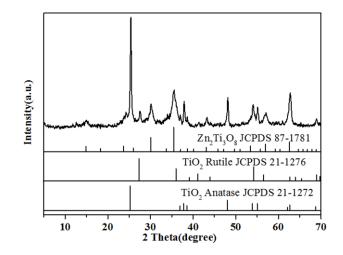


Fig. S2 XRD pattern of product after the heat-treatment of Zn-HTO at 600 °C

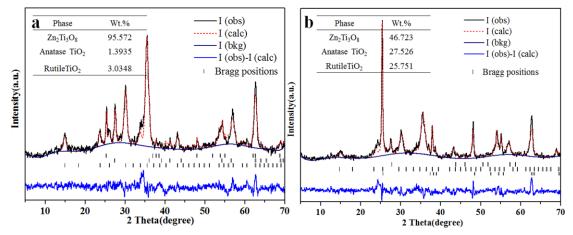


Fig. S3 Experimental XRD patterns (solid lines) and calculated patterns (dotted red line) of products after the heat-treatment of $Zn-H_2O_2$ -HTO (a) and Zn-HTO (b) at 600 °C. The vertical marks indicate the position of Bragg peaks, and the bottom line shows the differences between the observed and calculated intensities. The calculated compositions are also shown.

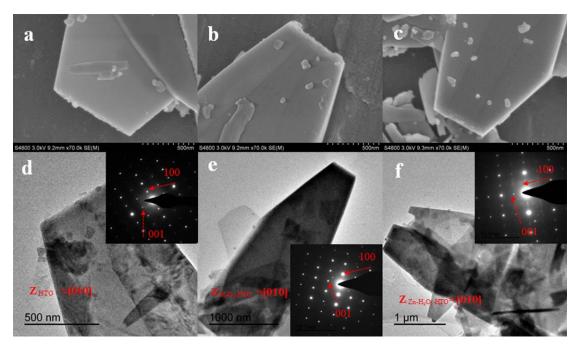


Fig. S4 FE-SEM images, TEM images and SAED pattern of HTO (a,d), H_2O_2 -HTO (b,e) and Zn- H_2O_2 -HTO (c,f).

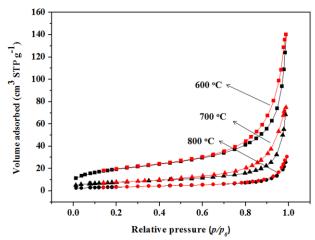


Fig. S5 Nitrogen adsorption/desorption isotherms of Zn2Ti3O8 obtained at 600, 700 and 800 °C

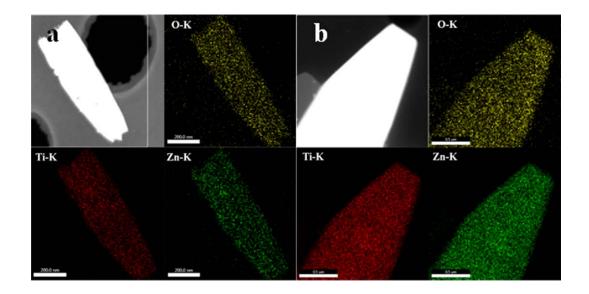


Fig. S6 EDS elemental mapping images of products after the heat-treatment of Zn-H₂O₂-HTO (a) and Zn-HTO (b) at 600 $^\circ C.$

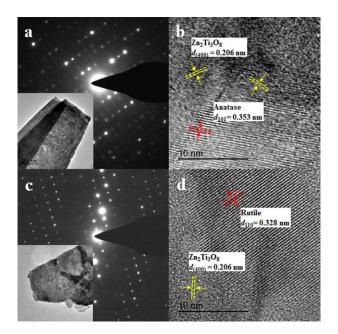


Fig. S7 SAED patterns and HRTEM images of products after the heat-treatment of Zn-H₂O₂-HTO at 700 (a,b) and 800 °C (c,d).

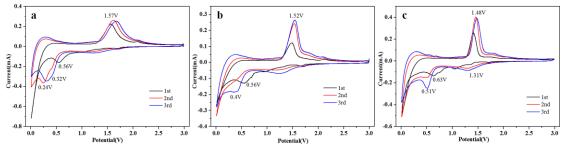


Fig. S8 The cyclic voltammograms (CVs) of products after the heat-treatment of Zn-H₂O₂-HTO at 600 (a), 700 (b) and 800 $^{\circ}$ C (c).

Fig. S8 present the cyclic voltammetry of $Zn_2Ti_3O_8$ electrodes obtained at 600, 700 and 800 °C, which was carried out at room temperature in the range of 0.01–3.0 V at a scan rate of 0.1mV s⁻¹. It is found that The $Zn_2Ti_3O_8$ electrodes obtained at different temperature show similar CV curves. A cathodic peak appears at 0.56V in the first cycle is attributed to the formation of solid electrolyte interface film at first cycle (this peak is not observed during following cycles). A pair of redox peaks located at about 1.54/1.33 V is related to Ti^{4+}/Ti^{3+} redox couple, implying that the lithium-ion intercalation/deintercalation into/out of the electrodes is reversible. And a cathodic peak found at 0.3 V during the second and third cycles might result from multiple restoration of $Ti^{4+[3-5]}$.

- W. J. H. Borghols, M. Wagemaker, U. Lafont, E. M. Kelder and F. M. Mulder, *J. Am. Chem. Soc.*, 131,17786-17792.
- 5. H. Ge, N. Li, D. Li, C. Dai and D. Wang, *Electrochem. Commun.*, 2008, 10, 719-722.

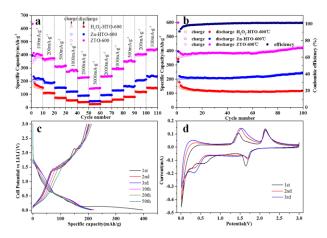


Fig. S9 (a)rate capability from 100 to 5000 mA g⁻¹, (b)cycling performance of Zn₂Ti₃O₈/TiO₂ at 100 mA g⁻¹, (c)voltage profiles under 100 mA g⁻¹; (d) cyclic voltammograms. H₂O₂-HTO-600: TiO₂ obtained by heat treating H₂O₂-HTO at 600 °C
Zn-HTO-600: Zn₂Ti₃O₈/TiO₂ obtained by heat treating Zn²⁺ ion-exchanged HTO sample at 600 °C
ZTO-600: Zn₂Ti₃O₈ nanoarchitecture obtained at 600 °C

Fig. S9a shows the rate performance of H_2O_2 -HTO-600, Zn-HTO-600 and ZTO-600. The H_2O_2 -HTO-600 electrode represents the worst performance among three electrodes. At the current density of 100 mA g⁻¹, ZTO-600 displays the capacity of 406 mAh g⁻¹ while Zn-HTO-600 shows the capacity of 221 mAh g⁻¹. The capacities of ZTO-600 and Zn-HTO-600 are 368 and 189 mAh g⁻¹ at a current density of 100 mA g⁻¹. When the current density increases to 1A g⁻¹, they show the capacity of 273 and 121 mAh g⁻¹. While the current density is returned to 100m A g⁻¹, ZTO-600 exhibits a higher capacity of 439 mAh g⁻¹ compared with that of Zn-HTO-600 (236 mAh g⁻¹). It is found that ZTO-600 electrode shows more excellent rate performance that that of Zn-HTO-600 electrode, which is due to the larger specific surface area and its porous network structure, meaning the more effective contact areas of active materials, conductive additives, and shorter lithium ion diffusion paths.

The cycle performances of Zn-HTO-600 and ZTO-600 are shown in Fig. S9b. Zn-HTO-600 displays a lower capacity of 100 mAh g^{-1} at the first few cycles and maintains no change after 100 cycles. ZTO-600 shows a discharge capacity of 599 mAh g^{-1} while Zn-HTO-600 exhibits a discharge capacity of 396 mAh g^{-1} at first cycles. After few cycles, the capacities of ZTO-600 and Zn₂Ti₃O₈/TiO₂ at 600 °C are 381 and 216 mAh g^{-1} respectively. The capacities of them nearly remain unchanged after 100 cycles. It is believed that ZTO-600 has a better cycle performance and good cycle stability.

Fig. S9c presents the first charge/discharge profiles of Zn-HTO-600 at different cycles under the current density of 100 mA g⁻¹ tested for 100 cycles. The initial discharge and charge capacities are 396 and 195 mAh g⁻¹, the discharge capacity decreases to 220 mAh g⁻¹ at the second cycle, and keeps unchanged in the following cycles with the coulombic efficiencies of almost 100%. Although Zn-HTO-600 has good cycle stability, the capacity is still low.

Cyclic voltammogram (CV) of Zn-HTO-600 is displayed in Fig S9d. A cathodic peak appears at 0.6V in the first cycle is attributed to the formation of solid electrolyte interface film at first cycle. A pair of redox peaks located at about 2.1/1.6 V is related to Ti^{4+}/Ti^{3+} redox couple of TiO_2 in Zn-HTO-600. The peaks at 2.1 and 1.6 V belonging to TiO_2 are not observed in Zn₂Ti₃O₈ at 600 °C which may be due to the lower content and weak crystallinity of TiO_2 in the sample. And a pair of redox peaks at about 1.54/1.33 V corresponds to Ti^{4+}/Ti^{3+} redox couple of Zn₂Ti₃O₈ in Zn-HTO-600. The cathodic peak found at 0.3 V during the second and third cycles might result from multiple restoration of Ti^{4+} .

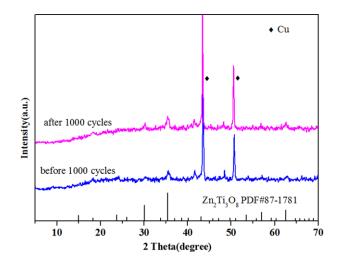


Fig. S10 The *ex-situ* XRD patterns of the electrode materials before and after tested for 1000 cycles.