Supporting Information

The synthesis of $\mathbf{Z n S} @ \mathrm{MoS}_{\mathbf{2}}$ hollow polyhedrons for an enhanced lithium storage performance

Yueying, Zhao, ${ }^{\text {a, } b}$ Wanwan Wang, ${ }^{\text {a, }, ~ M e n g n a ~ C h e n, ~}{ }^{\mathrm{a}, \mathrm{b}}$ Ruojie, Wang, ${ }^{\mathrm{a}, \mathrm{b}}$ Zhen, Fang ${ }^{\text {, }, ~, ~ b ~}$
${ }^{\text {a }}$ College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China.
${ }^{\mathrm{b}}$ Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu 241000, P. R. China.

[^0]

Figure S1. (a-b) SEM images and (c-d) TEM image of ZIF-8. (e) XRD pattern of ZIF-8.

Figure S2. TEM images of the products obtained at different reflow times, (a) 1 h (b) $2 \mathrm{~h}(\mathrm{c}) 4 \mathrm{~h}(\mathrm{~d}) 6 \mathrm{~h}$.

Figure S3. (a-b) SEM, (c-d) TEM of ZIF-8@ZnS core-shell (e) XRD patterns

Figure S4. (a) XRD profile and (b) EDX pattern of the obtained MoS_{2} without using ZIF-8@ZnS template.

Figure S5. (a-b) SEM images and (c-d) TEM images of MoS_{2}.

Figure S6. the Raman spectrum of $\mathrm{ZnS} @ \mathrm{MoS}_{2}$ composites.

Figure S7. XPS survey spectrum of $\mathrm{ZnS} @ \mathrm{MoS}_{2}$ hollow polyhedrons.

Figure S8. The initial three CV curves of (a) MoS_{2} and (b) ZnS electrodes in the potential range of $0.01-3.0 \mathrm{~V}\left(\mathrm{vs} . \mathrm{Li} / \mathrm{Li}^{+}\right)$at a scan rate of $0.1 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S9. Long-term cycling performance and CE of the $\mathrm{ZnS} @ \mathrm{MoS}_{2}$ hollow polyhedron at a current density of $500 \mathrm{~mA} \mathrm{~g}^{-1}$.

Figure S10. TEM image of the $\mathrm{ZnS} @ \mathrm{MoS}_{2}$ hollow polyhedron after cycling.

Figure S11. High-resolution XPS spectra of the (a) Zn 2p, (b)Mo 3d, (c)S 2p, and (d) C 1s after cycling.

Table S1. Impedance parameters derived using equivalent circuit model for electrodes before and after 200 cycles at $0.2 \mathrm{~A} \mathrm{~g}^{-1}$.

Electrode	$\mathbf{R}_{\mathbf{s}}(\mathbf{\Omega})$	$\mathbf{R}_{\mathbf{c t}}(\mathbf{\Omega})$
$\mathrm{ZnS} @ \mathrm{MoS}_{2}$ (before cycle)	5.698	51.401
$\mathrm{ZnS} @ \mathrm{MoS}_{2}$ (after 200 cycles)	4.712	25.701

ZnS (before cycle)	11.569	168.182
ZnS (after 200 cycles)	7.464	95.981
MoS_{2} (before cycle)	6.825	98.332
MoS_{2} (after 200 cycles)	4.046	69.597

[^0]: * Zhen Fang: Corresponding author, fzfscn@mail.ahnu.edu.cn.

