Supporting Information for the manuscript:

Photochromic and photomodulated luminescent properties of two metalviologen complexes constructed by a tetracarboxylate anchored bipyridinium-based ligand

Lin-Ke Li,^{*a} Hai-Yang Li,^a Ting Li,^a Li-Hong Quan,^a Jing Xu,^a Fu-An Li^b and Shuang-Quan Zang^{*a} ^aCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China

^bCollege of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, P. R. China

This file includes Table S1, S2 and Figures S1–S5.

Table S1. Crystallographic Data for Complexes **1** and **2**. Table S2. Selected Bond Distances and Angles for Complexes **1** and **2**.

Figure S1. Thermogravimetric curves of the complexes 1 and 2.

Figure S2. The simulated and experimental PXRD patterns for complexes 1 and 2.

Figure S3. The IR spectra of complexes 1 and 2 before and after irradiation.

Figure S4. The solid-state UV-vis spectra of the ligand H_4L ·Cl₂.

Figure S5. The possible electron transfer pathways in complexes **1** and **2**. Distances are in angstrom (Å).

Complex	1	2
formula	$C_{30}H_{26}Cd_3Cl_6N_2O_{10}\\$	C ₁₆ H ₁₃ EuN ₃ O ₁₂
fw	1124.43	591.25
crystal system	triclinic	triclinic
space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	8.0685(4)	8.0365(4)
<i>b</i> (Å)	11.3449(4)	9.9090(7)
<i>c</i> (Å)	11.3700(5)	12.1201(8)
α (°)	66.307(4)	94.619(6)
β (°)	75.977(4)	95.775(5)
γ (°)	72.054(4)	94.636(5)
$V(Å^3)$	898.25(7)	953.29(10)
Ζ	1	2
$Dc (g \cdot cm^{-3})$	2.079	2.060
<i>F</i> (000)	546.0	578.0
reflns collected	6098	11611
Independent reflns	3171	3884
<i>R</i> (int)	0.0213	0.1168
GOF on F^2	1.065	1.094
$R_1^a (I \ge 2\sigma (I))$	0.0321	0.0689
wR_2^b ($I > 2\sigma(I)$)	0.0801	0.1663

Table S1. Crystallographic data for complexes ${\bf 1}$ and ${\bf 2}$

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, {}^{b}wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w(F_{o}^{2})^{2}]^{1/2}$

		Comple	ex 1 ^a		
Cd1–Cl3	2.6320(12)	O24–Cd1#2	2.300(3)	Cd1-O24#2	2.300(3)
Cd1-Cl3#1	2.7271(11)	Cl3-Cd1#1	2.7271(11)	Cd2C15#3	2.6385(12)
Cd1–Cl4	2.5071(12)	Cd2-O23#4	2.264(3)	Cd2C15	2.6385(12)
Cd1Cl5	2.5892(11)	Cd2-O25	2.385(3)	Cd2-O23#2	2.264(3)
Cd1-O20	2.442(3)	Cd2-O25#3	2.385(3)	O23–Cd2#5	2.264(3)
Cl3-Cd1-Cl3#1	82.51(4)	C19-O20-Cd1	139.4(3)	O25-Cd2-Cl5#3	90.64(9)
Cl4–Cd1–Cl3	96.92(4)	C22-O24-Cd1#2	129.6(3)	O25-Cd2-Cl5	89.36(9)
Cl4-Cd1-Cl3#1	94.55(4)	O23#2-Cd2-O25	90.46(12)	O25#3-Cd2-Cl5#3	89.36(9)
Cl4-Cd1-Cl5	95.54(4)	O23#4Cd2O25	89.54(12)	O20-Cd1-Cl3	91.20(8)
Cl5-Cd1-Cl3#1	169.89(4)	O23#4Cd2O25#3	90.46(12)	O20-Cd1-Cl3#1	83.58(7)
Cl5-Cd1-Cl3	96.92(4)	O23#2-Cd2-O25#3	89.54(12)	O20-Cd1-Cl4	171.37(8)
O20-Cd1-Cl5	86.35(7)	O25#3-Cd2-Cl5	90.64(9)	Cl5#3-Cd2-Cl5	180
O24#2-Cd1-Cl3#1	88.55(8)	O25-Cd2-O25#3	180.00(15)	O23#4Cd2Cl5	88.16(9)
O24#2Cd1Cl3	169.05(8)	Cd1-Cl3-Cd1#1	97.49(4)	O23#4Cd2Cl5#3	91.84(9)
O24#2-Cd1-Cl4	90.05(8)	Cd1-Cl5-Cd2	107.11(4)	O23#2-Cd2-Cl5#3	88.16(9)
O24#2Cd1Cl5	90.76(8)	C22-O23-Cd2#5	126.1(3)	O23#2-Cd2-O23#4	180
O24#2-Cd1-O20	81.49(11)	O23#2-Cd2-Cl5	91.84(9)		
		Comple	x 2 ^b		
Eu1–O2	2.562(7)	C12–C12#2	1.51(2)	Eu1–O7	2.710(8)
Eu1–O1	2.436(7)	Eu1–O6	2.423(8)	Eu1–O8	2.542(8)
Eu1-O3#1	2.518(7)	Eu1011	2.584(8)	O3–Eu1#3	2.518(7)
Eu1-O4#1	2.431(7)	Eu1-O10	2.533(8)	Eu1–O5	2.449(7)
O4–Eu1#3	2.431(7)				
O1–Eu1–O2	52.1(2)	O5–Eu1–O2	81.9(3)	O3#1-Eu1-O11	139.6(3)
O1-Eu1-O3#1	119.0(2)	O5–Eu1–O3#1	87.8(3)	O3#1-Eu1-O10	132.0(3)
O1–Eu1–O7	160.2(3)	O5–Eu1–O7	70.2(3)	O3#1–Eu1–O2	152.0(3)
O1–Eu1–O8	114.2(3)	O5–Eu1–O8	118.6(3)	O3#1–Eu1–O7	68.0(2)
O1–Eu1–O5	126.4(3)	O5-Eu1-O11	119.5(3)	O3#1–Eu1–O8	70.1(3)
O1-Eu1-O11	70.3(3)	O5-Eu1-O10	71.4(3)	O6-Eu1-O2	78.6(3)
O1-Eu1-O10	107.9(3)	C11-C12-C12#2	122.3(12)	O6-Eu1-O1	78.6(3)
O2-Eu1-O7	130.6(2)	C11-C12-C13	117.9(11)	O6-Eu1-O3#1	73.5(3)
O2-Eu1-O11	66.8(3)	C8–O3–Eu1#3	91.3(6)	O6-Eu1-O4#1	79.3(3)
O4#1-Eu1-O2	121.0(2)	C6-C8-Eu1#3	177.2(7)	O6-Eu1-O7	120.8(3)
O4#1-Eu1-O1	70.2(2)	O3–C8–Eu1#3	62.8(5)	O6-Eu1-O8	143.1(3)
O4#1-Eu1-O3#1	52.1(2)	O4–C8–Eu1#3	58.8(5)	O6-Eu1-O5	65.1(2)
O4#1-Eu1-O7	107.6(3)	C8–O4–Eu1#3	95.0(6)	O6-Eu1-O11	143.1(3)
O4#1-Eu1-O8	73.8(3)	N3–O7–Eu1	93.2(6)	O7–N3–Eu1	62.4(5)
O4#1-Eu1-O5	133.1(2)	N3-O8-Eu1	101.1(6)	O8–N3–Eu1	54.8(5)
O4#1-Eu1-O11	107.3(3)	C16-O5-Eu1	121.5(6)	O6-Eu1-O10	128.3(3)
O4#1-Eu1-O10	152.2(3)	C15-O6-Eu1	118.2(7)	O11–Eu1–O7	92.4(3)

Table S2. Selected Bond Distances and Angles for Complexes 1 and 2

O8–Eu1–O2	137.3(2)	O8–Eu1–O7	48.5(2)	N2011Eu1	94.8(6)
O8–Eu1–O11	70.6(2)				

Symmetry codes: *a* #1: -*x*+2, -*y*, -*z*+1, #2: -*x*+1, -*y*, -*z*+2, #3: *x*+1, *y*-1, *z*, #4: -*x*+1, -*y*+1, -*z*+1, #5: *x*-1, *y*+1, *z*, #6: -*x*+2, -*y*+1, -*z*; *b* #1: +*x*, 1 + *y*, +*z*; #2: -*x*, 1 - *y*, 3 - *z*; #3: +*x*, -1 + *y*, +*z*.

Figure S1. Thermogravimetric curves of the complexes 1 (left) and 2 (right).

Figure S2. The simulated and experimental as well as before and after the irradiation PXRD patterns for complexes 1 (left) and 2 (right) (black-simulated, red-as synthesized, blue-after irradiation and dark green-after thermal bleaching).

Figure S3. The IR spectra of complexes 1 (left) and 2 (right) before irradiation, after irradiation and after thermal bleaching.

Figure S4. The solid-state UV-vis spectrum of the ligand $H_4L \cdot Cl_2$.

Figure S5. The possible electron transfer pathways in complexes 1 (up) and 2 (down). Distances are in angstrom (Å).