Electronic Supplementary Information

Different photochromic properties induced by lone pair- π interactions varying strength in two stereocontrolled self-assembly isomeric coordination polymers[†]

Chen Fu, Guo-Shuai Zhang, Hai-Yu Wang, Li Li, Jia-Wei Fu, Ya-Nan Sun and Hong Zhang*

^aInstitute of Polyoxometalate Chemistry, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, PR China. Fax:+86-0431-85099372;Tel:+86-0431-85099372;

E-mail: hope20130122@163.com; Zhangh@nenu.edu.cn

1. Graphics

Fig. S1 (a) Selected part of 2D structure showing the connection mode of m-BDC²⁻ ligand and (b) interpenetrated two kinds directional unit construction structures in compound **1**.

Fig. S2 The interactions (green: lone pair- π interactions; orange and pink: CH- π interactions) between different molecules from 2D networks forming 3D supramolecular structure in compound 1.

Fig. S3 (a) Face-to-face π - π stacking interactions in the adopted framework [Cd(IsoNDI)(2,6-NDC)(H₂O)₂]; Lone pair- π interactions between adjacent IsoNDI ligands in the two adopted frameworks [Cd(IsoNDI)(m-BDC)(DMF)] (b) and [Cd₂(IsoNDI)₂(p-BDC)_{0.5}(MAC)₂](c).

Fig. S4 Time-dependent UV-Vis spectra of compounds 1 (a) and 2 (b) upon irradiation by 300W xenon lamp.

Fig. S5 UV-Vis spectrum of DPMNI free ligand before and after irradiation by 300W xenon lamp.

Fig. S6 Luminescence spectrum of DPMNI free ligand before and after irradiation by 300W xenon lamp.

Fig. S7 PXRD patterns of compounds 1 (a) and 2 (b). Lables: 1a, 2a: before irradiation; 1b, 2b: after irradiation; Decolored: by dark treatment about one month; Simulated: according to their single-crystal X-ray diffraction data.

Fig. S8 IR spectra of compounds 1 (a) and 2 (b). Lables: 1a, 2a: before irradiation; 1b, 2b: after irradiation; Decolored: by dark treatment about one month;

Fig. S9 TGA curves of compounds 1 (a) and 2 (b) were carried out in powder states under N_2 atmosphere.

Fig. S10 The charge of different O atoms in two kinds lone pair- π interactions as electron transfer pathways in compounds 1 (a)-2 (b).

2. Tables

Table S1. Crystal	data and structure	e refinement parai	meters for com	pounds 1-2
-------------------	--------------------	--------------------	----------------	------------

Compound	1	2	
Empirical formula	$C_{34}H_{20}N_4O_8Cd$	C ₃₄ H ₂₀ N ₄ O ₈ Cd	
Formula weight	724.94	724.94	
Crystal system	Orthorhombic	Monoclinic	
Space group	Pnma	P21/n	
<i>a</i> (Å)	23.835(5)	18.0496(10)	
$b(\text{\AA})$	10.0215(19)	8.0270(4)	
<i>c</i> (Å)	12.362(2)	20.6646(11)	
α (°)	90	90	
β (°)	90	102.2210(10)	
γ (°)	90	90	
V (Å ³)	2952.7(10)	2926.1(3)	
Ζ	4	4	
T (K)	296(2)	296(2)	
ρ_{calc} (g/cm ³)	1.631	1.646	
F (000)	1456	1456	
Absorption coefficient	0.802	0.810	
Goodness-of-fit on F^2	0.753	1.017	
$R_1^a, wR_2^b (I > 2\sigma(I))$	0.0478, 0.1614	0.0297, 0.0433	
R_1^a , wR_2^b (all data)	0.0583, 0.1777	0.0654, 0.0724	

 ${}^{a}R_{1} = \sum \left\| F_{0} \right\| - \left\| F_{c} \right\| / \sum \left\| F_{0} \right\| \cdot {}^{b}wR_{2} = \left[\sum w(F_{0}{}^{2} - F_{c}{}^{2})^{2} / \sum w(F_{0}{}^{2}) \right]^{\frac{1}{2}}.$

Compound 1	Compound 2
Cd(1)-N(4)#2 2.256(5)	Cd(1)-N(4)#1 2.313(2)
Cd(1)-N(1) 2.254(5)	Cd(1)-N(1) 2.295(2)
Cd(1)-O(1) 2.266(4)	Cd(1)-O(1) 2.399(2)
Cd(1)-O(2) 2.512(5)	Cd(1)-O(2) 2.298(2)
Cd(1)-O(1)#1 2.266(4)	Cd(1)-O(3) 2.315(2)
Cd(1)-O(2)#1 2.512(5)	Cd(1)-O(4) 2.430(2)
N(4)#2-Cd(1)-O(1)#1 125.80(14)	N(1)-Cd(1)-O(2) 97.68(9)
N(4)#2-Cd(1)-O(1) 125.80(14)	O(2)-Cd(1)-O(3) 104.12(9)
O(1)-Cd(1)-O(1)#1 79.7(2)	O(3)-Cd(1)-N(1) 105.81(8)
N(4)#2-Cd(1)-N(1) 116.12(17)	N(4)#1-Cd(1)-O(2) 109.69(9)
N(1)-Cd(1)-O(1)#1 100.86(17)	N(1)-Cd(1)-N(4)#1 98.97(9)
N(1)-Cd(1)-O(1) 100.86(17)	N(4)#1-Cd(1)-O(3) 134.5(2)
N(4)#2-Cd(1)-O(2)#1 86.83(9)	O(2)-Cd(1)-O(1) 55.73(9)
O(1)#1-Cd(1)-O(2)#1 53.90(13)	N(1)-Cd(1)-O(1) 151.54(9)
O(1)-Cd(1)-O(2)#1 133.64(14)	O(1)-Cd(1)-O(3) 91.89(8)
N(1)-Cd(1)-O(2)#1 89.52(10)	N(4)#1-Cd(1)-O(1) 83.10(8)
N(4)#2-Cd(1)-O(2) 86.83(9)	O(4)-Cd(1)-O(2) 158.83(9)
O(2)-Cd(1)-O(1)#1 133.64(14)	N(1)-Cd(1)-O(4) 86.54(8)
O(1)-Cd(1)-O(2) 53.90(13)	O(3)-Cd(1)-O(4) 54.96(8)
N(1)-Cd(1)-O(2) 89.52(10)	N(4)#1-Cd(1)-O(4) 89.96(8)
O(2)#1-Cd(1)-O(2) 172.41(17)	O(1)-Cd(1)-O(4) 121.91(9)

 Table S2. Selected Bond lengths [Å] and angles [°] for compounds 1-2

Symmetry code: for 1: #1: x, 0.5-y, z; #2: -0.5+x, y, 0.5-z. for 2: #1: -0.5+x, 1.5-y, 0.5+z.