Supporting Information

One-step synthesis of non-symmetric CuI nanoplates for high sensitive nonenzymatic glucose biosensor

Misbah Ullah Khan, Hongjun You, * Dongjie Zhang, Lingling Zhang, and Jixiang Fang*

Figure S1. EDX analysis for CuI nanoplates.

Figure S2. PXRD patterns of CuI nanoplates.

Figure S3. SEM images of CuI particles synthesized without PVP, and the concentrations of $CuCl_2$ are (a) 2 mM (b) 4 mM and (c) 6 mM.

Figure S4. EDX analysis for CuI nanoflowers.

Figure S5. EDX analysis for thick CuI-micropartcles.

Figure S6. PXRD patterns of CuI nanoflowers and CuI microparticles.

Figure S7. Amperometric current-time response of CuI-nanoflowers with the addition of different concentration of glucose ratios into 0.1 M KOH, with the applied potential 0.62 V vs Ag/AgCl.

Figure S8. Amperometric current-time response of CuI microsparticles with the addition of different concentration of glucose ratios into 0.1 M KOH, with the applied potential 0.62 V vs Ag/AgCl.

Electrode material	Sensitivity (µAmM ⁻¹ cm ⁻²)	Linear range	Response time (s)	References
CQDs/Cu2O/Nafion/GCE	298	0.02-4.3	10	[1]
Cu nanowires	420.3	Up to 3	Not given	[2]
GO/CuO/GCE	262.52	Up to2.03	Not given	[3]
5% NiO@Ag NWs	67.51	0-1.28	7	[4]
2-nm AuNWs/GCE	56	up to 12	< 10	[5]
Au _{glu} /GCE	153	0.1-12	< 5	[6]
Chitosan/cysteamine	8.91	1.5-27	< 10	[7]
Ag Polydopamine@CNT	3.1	0.05-1.1	Not given	[8]
GOD/AuNPs/G/CTs/GCE	29.72	0.005-0.175	Not given	[9]
Cu ₂ O/NiOx/GO/GCE	285	0.87-2.95	Not given	[10]
CuI-nanoplates/GCE	336.05	0.5-5	≤ 2	This work

Table S1. Analytical performance of CuI nanoplates with other nonenzymatic glucose biosensors.

References

(1) Li, Y.; Zhong, Y.; Zhang, Y.; Weng, W.; Li, S. Carbon quantum dots/octahedral Cu2O nanocomposites for non-enzymatic glucose and hydrogen peroxide amperometric sensor. *Sens. Actuators B Chem.* **2015**, *206*, 735-743.

(2) Zhang, Y.; Su, L.; Manuzzi, D.; de los Monteros, H. V. E.; Jia, W.; Huo, D.; Hou, C.; Lei, Y. Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. *Biosens. Bioelectron.* **2012**, *31*, 426-432.

(3) Song, J.; Xu, L.; Zhou, C.; Xing, R.; Dai, Q.; Liu, D.; Song, H. Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced nonenzymatic glucose detection. *ACS Appl. Mater. Interfaces* **2013**, *5*, 12928-12934.

(4) Jian, S.; Lin, X.; Qing, X. R.; Feng, Q. W.; Lin, D. Q.; Wei, S. H. Ag nanoparticles coated NiO nanowires hierarchical nanocomposites electrode for nonenzymatic glucose biosensing. *Sens. Actuators B Chem.* **2013**, *182*, 675-681.

(5) Lu, Y.; jia, Z. Y.; Mi, C. Fang, D. W.; Ming, T. Y.; Ma. M.; Li, S. X.; Ji, X. Q.; Zhuo, Y. S. Facile fabrication of network film electrodes with ultra-thin Au nanowires for non-enzymatic glucose sensing and glucose/O2 fuel cell. *Biosens. Bioelectron.* **2014**, *52*, 105-110.

(6) Yun, X. F.; Zhao, H.; Chao, C.; Ji, X. Q.; Yi, H.; Qin, C.; Liu, Y.; Hong, S. Z.; Huo, Y. S. Preparation of Au-film electrodes in glucose-containing Au-electroplating aqueous bath for high-performance nonenzymatic glucose sensor and glucose/O2 fuel cell. *Electrochem. Commun.* **2012**, *18*, 108-111.

(7) Zhang, Y.; Li, Y.; Wu, W.; Jiang, Y.; Hu, B. Chitosan coated on the layers' glucose oxidase immobilized on cysteamine/Au electrode for use as glucose biosensor. *Biosens. Bioelectron*. **2014**, *60*, 271-276.

(8) Wang, Y.; Liu, L.; Li, M.; Xu, S.; Gao, F. Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. *Biosens. Bioelectron.* **2011**, 107-111.

(9) Huang, K. X.; Jun, W.; Hong, W. Glucose Oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. *Biosens. Bioelectron.* **2009**, *25*, 901-905.

(10) Yu, Y.; Chen, Z. G.; He, S. J.; Zhang, B. B.; Li, X. C.; Yao, M. C. Direct electron transfer of glucose oxidase and biosensing for glucose based on PDDA-capped gold nanoparticle modified graphene/multi-walled carbon nanotubes electrode. *Biosens. Bioelectron.* **2014**, *52*, 147-152.