Electronic Supplementary Information for:

Enhanced photochemical activity and stability of ZnS by a simple alkaline treatment approach

Zain Ul Abideen, Fei Teng*

Jiangsu Engineering and Technology Research Centre of Environmental Cleaning Materials (ECM), Collaborative Innovation Centre of Atmospheric Environment and Equipment
Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School of Environmental Science and Engineering,
Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing
210044, China. Email address: tfwd@163.com (F. Teng)

Table S1

Samples	^a Crystallite	b S _{BET}	Zeta potential	Absorption edge	Band gap (eV)	
	size	(m^2g^{-1})	(mV)	(nm)	°КМ	^d DFT
	(nm)				method	calculation
ZnS	4.52	27.61	-29.6	375	3.26	3.12
1M-ZnS	9.52	60.99	/	370	3.35	/
3M-ZnS	13.18	51.18	+18.0	355	3.50	3.30
5M-ZnS	17.14	37.48	/	358	3.46	/
10M-ZnS	17.13	11.02	/	365	3.43	/

Physiochemical properties of the as-synthesized samples

^{*a*} by Debye Scherer equation for the (111) peaks of ZnS; ^{*b*} calculated by Brunauer-Emmett-Teller (BET) method; ^{*c*} by Kubelka-Munk function from UV–DRS; ^{*d*} calculated by density functional theory (DFT)

Та	ble S	2

DT ID	1		C	
	0100	17010	tor	Inv
1, 1 - 1 1		IVSIS.	101	Z 11.5
T T T T T T	willer.		101	
		2		

Peaks	Wavenumber (cm ⁻¹)	Peak intensity	Interpretation
1	1397	Small, weak	C-H bending
2	1552	Sharp, broad	O-H bending (adsorbed water)
3	3331	Broad	Associated O-H (adsorbed water)

Table S3

FT-IR analysis for 3M-ZnS

Peaks	Wavenumber (cm ⁻¹)	Peak intensity	Interpretation
1	1383	Small, weak	C-H bending
2	1625	Sharp, broad	O-H bending (adsorbed water)
4	3419	Broad	Associated O-H (adsorbed water)

Table S4

Apparent reaction kinetic constants for the degradation of MB under UV light irradiation

 $(\lambda \leq 420 \text{ nm})$

Samples	ZnS	1M-ZnS	3M-ZnS	5M-ZnS	10M-ZnS
k (g mg-1 min-1)	0.0262	0.0312	0.0405	0.0335	0.0234
R^2	0.94	0.96	0.93	0.98	0.98

Fig. S1 FT-IR spectra of the samples; (a) ZnS; (b) 3M-ZnS

Fig. S2 SEM images of the samples; (a) ZnS; (b) 1M-ZnS (c) 3M-ZnS; (d) 5M-ZnS; and (e)

10M-ZnS

Fig. S3 EPR of the samples

Fig. S4

Fig. S4 Zeta potentials of ZnS and 3M-ZnS

Fig. S5 (a) UV-DRS and (b) Tauc plots of the samples

Fig. S6 (a-d) Mott–Schottky plots at fixed frequency of 1 kHz in 0.5 M Na₂SO₄ (pH = 6.8);

(d) CB and VB potentials

Fig. S7 (a) EIS and (b) photocurrent spectra under UV-light irradiation ($\lambda \le 420$ nm)

Fig. S7

Fig. S8 SPV of (a) 1M-ZnS; (b) 5M-ZnS and (c) 10M-ZnS.

Fig. S9 (a) Degradation curves and (b) reaction kinetic curves of Methylene Blue (MB) solution under UV-light irradiation ($\lambda \le 420$ nm)