Supplementary information

Gas Adsorption, Magnetic Properties and Fluorescent Sensing of Coordination **Polymers** Four Based on 1,3,5–Tris(4carbonylphenyloxy)benzene and Bis(imidazole) Linkers

Jie Zhang, Ling-LingGao, Li-junZhai, Xiao-Qing Wang, Li-Ming Fan, Tuo-Ping Hu

Table S1. Crystallographic data for 1, 2, 3 and 4.					
Complex	1	2	3	4	
Empirical formula	$C_{90}H_{58}Co_{3}N_{8}O_{18}$	$C_{188}H_{132}N_6O_{42}Cd_6\\$	$C_{75}H_{51}Co_{3}N_{6}O_{18}$	$C_{76}H_{60}N_4O_{22}Zn_3$	
Formula weight	1716.23	3961.55	1501.01	1577.39	
Crystal system	Triclinic	monoclinic	Triclinic	Triclinic	
Space group	P-1	C2/c	<i>P</i> -1	P-1	
a [Å]	15.849(8)	65.582(4)	10.5993(6)	10.3103(6)	
<i>b</i> [Å]	16.159(1)	30.419(2)	12.1538(8)	12.3541(7)	
<i>c</i> [Å]	23.670(1)	16.936(7)	14.4103(8)	14.4917(9)	
α [°]	97.696(2)	90	86.666(3)	86.150(2)	
β [°]	92.686(2)	90.001(0)	69.331(2)	70.328(2)	
γ [°]	112.973(2)	90	87.296(3)	86.391(2)	
<i>V</i> [Å ³]	5498(5)	33788(4)	1733.23(18)	1732.62(18)	
Ζ	2	8	1	1	
$Dc / (g \cdot cm^{-3})$	1.037	1.558	1.438	1.512	
F(000)	11758.0	15967.0	768.0	810.0	
μ (Mo K α) / mm ⁻¹	0.504	0.829	0.71073	0.71073	
Reflections collected	128968	280982	28127	35798	
θ range for data collection / (°)	2.262-25.449	2.214-25.027	2.08-26.179	3.309-27.521	
Independent reflections (R_{int})	20250 (0.0960)	29843(0.1198)	6879(0.0859)	7977(0.0879)	
Data / restraints / parameters	20250/0/1072	29843/2568/2437	6879/132/493	7977/73/475	
Gof	1.024	1.077	1.023	1.034	
$R_1, wR_2 [I > 2\sigma(I)]^{ab}$	0.0715, 0.1148	0.0870, 0.1907	0.0730,0.1959	0.0511 0.1346	
R_1 , wR_2 (all data) ^{<i>a</i>}	0.1265, 0.1673	0.1337, 0.2232	0.1290,0.2361	0.0662, 0.1452	
Largest diff. Peak and hole[e·Å ⁻³] CCDC number	0.38 and -0.37 1576190	2.36 and -2.75 1576192	1.67 and-0.75 1848568	0.95 and-0.55 1848570	
	$\frac{10,0190}{10,0190}$	$E^{2}/(\Sigma_{\rm eff}/E^{2})^{2}D^{1/2}$	1010200	1010070	

Table S1 Crystallographic data for 1 2 3 4

 ${}^{a}R_{I} = \Sigma ||F_{o}| - |F_{c}|/\Sigma ||F_{o}|. \ {}^{b}wR_{2} = \{ [\Sigma w (F_{o}2 - F_{c}^{2})^{2}/\Sigma w (F_{o}^{2})^{2}] \}^{1/2}.$

1 und 0 is a believed bolid for 1 ind bolid ungles/ 101 complex (1), (2), (c) und (1)	Table. S2 Selected bond	l lengths/Å and bond	angles/°for complex	(1), (2)), (3) and (4)
--	-------------------------	----------------------	---------------------	----------	--------------------

		Comp	lex 1		
Co1–O1 ⁱ	2.124(3)	Co1–O5 ⁱ	2.082(3)	Co1–O8 ⁱⁱ	2.070(3)
Co1-O10	2.063(3)	Co1–O14 ⁱⁱⁱ	2.122(3)	Co1–O17 ⁱⁱ	2.080(3)
Co2–O1 ^{iv}	2.147(3)	Co2–O2 ^{iv}	2.209(3)	Co2–O4 ^v	2.058(3)
Co2–O7	2.054(3)	Co2–N4	2.136(4)	Co2–N8 ^{vi}	2.065(3)
Co3–O11 ^v	2.061(3)	Co3–O14 ^{vii}	2.171(3)	Co3–O15 ^{vii}	2.149(3)

Co3–O18	2.070(3)	Co3–N1 ^v	2.119(4)	Co3–N5	2.054(3)
O5–Co1–O1 ⁱ	92.10(1)	O5–Co1–O14 ⁱⁱ	84.55(1)	O8 ⁱⁱⁱ –Co1–O11 ⁱ	89.31(1)
O8 ⁱⁱⁱ –Co1–O5	94.56(1)	O8 ⁱⁱⁱ –Co1–O14 ⁱⁱ	89.75(1)	O8 ⁱⁱⁱ –Co1–O17 ⁱⁱⁱ	85.07(1)
O10-Co1-O1 ⁱ	90.79(1)	O10-Co1-O5	94.56(1)	O10-Co1-O8 ⁱⁱⁱ	179.47(1)
O10-Co1-O14 ⁱⁱ	90.19(1)	O10–Co1–O17 ⁱⁱⁱ	94.31(1)	O14 ⁱⁱ –Co1–O1 ⁱ	90.79(1)
O17 ⁱⁱⁱ –Co1–O1 ⁱ	85.40(1)	O17 ⁱⁱⁱ –Co1–O5	177.49(1)	O17 ⁱⁱⁱ –Co1–O14 ⁱⁱ	97.95(1)
O17 ⁱⁱⁱ –Co1–O14 ⁱⁱ	97.95(1)	O14-Co2-O2 ^{iv}	59.95(1)	O4v-Co2-O1iv	89.17(1)
O4 ^v -Co2-O2 ^{iv}	86.74(1)	O4 ^v -Co2-N4	173.37(1)	O4v-Co2-N8vi	93.97(1)
O7–Co2–O1 ^{iv}	108.19(1)	O7–Co2–O4 ^v	92.44(1)	O7-Co2-N4	85.94(1)
O17v–Co2–N8vi	97.09(1)	N8 ^{vi} –Co2–O1 ^{iv}	85.14(1)	N8 ^{vi} –Co2–O2 ^{iv}	94.81(1)
012 ⁱ -Co3-N4	92.61(1)	O11 ^v –Co3–O14 ^{vii}	107.27(1)	O11 ^v -Co3-O18	90.73(1)
O11 ^v -Co3-O18	90.73(1)	O11 ^v –Co3–N1 ^v	86.99(1)	O15 ^{vii} –Co3–O14 ^{vii}	61.09(1)
O18-Co3-O14vii	87.35(1)	O18–Co3–O15 ^{vii}	92.13(1)	O18–Co3–N1 ^v	171.99(1)
N1v-Co3-O14vii	86.00(1)	N1v-Co3-O14vii	92.13(1)	N5-Co3-O11 ^v	95.36(1)
N5–Co3–O14 ^{vii}	156.78(1)	N5-Co3-O15 ^{vii}	96.20(1)	N5-Co3-O18	87.26(1)
N5–Co3–N1 ^v	100.60(1)				

Symmetry codes:ⁱ1+x, 1+y, +z; ⁱⁱ+x, +y, 1+z; ⁱⁱⁱ1+x, 1+y, 1+z; ^{iv}1+x, +y, 1+z; ^v+x, 1+y, +z; ^{vi+x}, -1+y, 1+z; ^{vii}1+x,

		Compl	ex 2		
Cd1017	2.365(6)	Cd1-O18	2.483(6)	Cd1-O21	2.258(7)
Cd1019	2.361(6)	Cd1–O20	2.454(7)	Cd1–O2 ^{viii}	2.374(7)
Cd2022	2.238(7)	Cd2–O38 ^{xi}	2.323(7)	Cd2–O2W	2.273(9)
Cd2–O37 ^{xi}	2.425(7)	Cd2-O23	2.421(9)	Cd3-N10	2.270(9)
Cd3–O19viii	2.420(7)	Cd3O1	2.466(7)	Cd3-O2	2.478(6)
Cd3–O36 ^{ix}	2.429(7)	Cd3–O35 ^{ix}	2.719(8)	Cd4013	2.407(6)
Cd4014	2.260(6)	Cd4015	2.475(6)	Cd4016	2.260(7)
Cd5–O3 ^{vi}	2.455(6)	Cd5–O6 ^{vi}	2.569(6)	Cd5–O5 ^{vi}	2.307(6)
Cd5–O29vii	2.610(6)	Cd5–O28 ^{vii}	2.349(6)	Cd6–O31 ⁱⁱ	2.444(6)
Cd6–O3 ⁱⁱⁱ	2.389(6)	Cd6–O30 ⁱⁱ	2.331(6)	Cd6–O4 ⁱⁱⁱ	2.398(6)
Cd6–O4 ⁱⁱⁱ	2.398(6)	Cd6–O29 ^{iv}	2.363(6)	Cd6–O15 ^v	2.272(6)
Cd1-N13	2.297(8)	Cd2–N7 ^{xii}	2.283(1)	Cd3–N11 ^x	2.275(8)
Cd5–N5	2.269(7)	Cd5–N4	2.308(8)	Cd6–N1	2.323(8)
O17-Cd1-O18	53.8(2)	O17-Cd1-O2viii	91.6(2)	O1-Cd1-O20	135.0(2)
O22-Cd2-O38xi	132.2(3)	O22-Cd2-O37xi	170.8(3)	O22-Cd2-O23	85.3(4)
O22-Cd2-N7 ^{xii}	87.3(4)	O38xi-Cd2-O37xi	55.5(2)	O22-Cd2-O2W	97.5(3)
O38xi-Cd2-O23	142.4(3)	O23-Cd2-O37xi	87.0(3)	O2W-Cd2-O38xi	96.3(3)
O2W-Cd2-O37xi	85.8(3)	O2W-Cd2-O23	77.6(3)	O2W-Cd2-N7 ^{xii}	163.9(4)
N7 ^{xii} –Cd2–O38 ^{xi}	91.8(4)	N7xii-Cd2-O37xi	87.3(3)	N7xii-Cd2-O23	87.4(4)
O2–Cd3–Cd1viii	37.90(1)	O1–Cd3–O2	52.9(2)	O19viii–Cd3–O2	74.7(2)
O19viii–Cd3–O1	127.2(2)	O19viii–Cd3–O36ix	140.4(2)	O35 ^{ix} –Cd3–O2	160.0(2)
O35ix-Cd3-O1	146.8(2)	O35ix-Cd3-O19viii	85.9(2)	O35 ^{ix} –Cd3–O36 ^{ix}	54.7(2)
O35 ^{ix} -Cd3-C62	54.7(2)	O36 ^{ix} –Cd3–O2	144.9(2)	O36 ^{ix} -Cd3-O1	92.1(2)
N11 ^x -Cd3-O2	89.7(3)	N11 ^x -Cd3-O1	85.0(3)	N11 ^x -Cd3-O19 ^{viii}	90.3(3)
N11 ^x -Cd3-O35 ^{ix}	95.1(3)	N11 ^x -Cd3-O36 ^{ix}	89.8(3)	N10-Cd3-O2	87.2(3)
N10-Cd3-O1	92.4(3)	N10-Cd3-O19viii	90.3(3)	N10-Cd3-O35 ^{ix}	88.0(3)
N10-Cd3-O36 ^{ix}	92.3(3)	O13-Cd4-O15	101.7(2)	O14Cd4O13	56.1(2)
O14– Cd4– O16	128.0(3)	O14-Cd4-N16	102.6(3)	O16Cd4O13	165.9(2)

O16 Cd4 O15	55.0(2)	O16Cd4N16	83.8(3)	O1W-Cd4-O13	90.0(3)
O1W-Cd4-O14	132.0(3)	O1W-Cd4-O15	81.8(3)	O1W-Cd4-O16	93.5(3)
O1W-Cd4-N16	105.1(3)	O3 ^{vi} –Cd5–O6 ^{vi}	139.0(7)	O3vi–Cd5–O29vii	73.5(8)
O6 ^{vi} –Cd5–O29 ^{vii}	146.1(2)	O5 ^{vi} –Cd5–O3 ^{vi}	86.0(2)	O5 ^{vi} –Cd5–O6 ^{vi}	53.3(2)
O5 ^{vi} –Cd5–O29 ^{vii}	158.8(2)	$O5^{vi}$ -Cd5-O28 ^{vii}	149.1(2)	O5 ^{vi} –Cd5–N4	91.9(3)
O28vii–Cd5–O3vi	124.2(2)	O28vii-Cd5-O6vi	88.8(2)	O28vii–Cd5–O29vii	52.0(6)
N5-Cd5-O3 ^{vi}	84.1(2)	N5–Cd5–O6 ^{vi}	88.8(2)	N4–Cd5–O3 ^{vi}	89.6(2)
N5–Cd5–O5 ^{vi}	86.5(3)	N5-Cd5-O29vii	85.9(2)	N5-Cd5-O29vii	85.9(2)
N5–Cd5–O28 ^{vii}	101.6(2)	N4–Cd5–O6 ^{vi}	95.1(3)	O30 ⁱ -Cd6-O31 ⁱ	54.6(2)
O30i-Cd6-O3iii	165.0(2)	O30 ⁱ -Cd6-O29 ^{iv}	88.2(2)	O30i-Cd6-O4iii	54.8(2)
O3 ⁱⁱⁱ –Cd6–O4 ⁱⁱⁱ	54.8(2)	O29 ⁱⁱⁱ –Cd6–O3 ⁱⁱⁱ	79.4(2)	O3 ⁱⁱⁱ –Cd6–O31 ⁱ	138.0(2)
O29 ⁱⁱⁱ -Cd6-O31 ⁱ	142.5(2)	O15 ^v -Cd6-O30 ⁱ	98.0(2)	O15 ^v -Cd6-O31 ⁱ	89.7(2)
O15v-Cd6-O3iii	90.8(2)	O15 ^v -Cd6-O29 ^{iv}	91.9(2)	O15v-Cd6-O4iii	91.6(2)
O15 ^v -Cd6-N1	175.0(3)	O4 ⁱⁱⁱ –Cd6–O30 ⁱ	83.2(2)	N1-Cd6-O31 ⁱ	94.6(3)
N1-Cd6-O3 ⁱⁱⁱ	87.6(2)	N1–Cd6–O29 ^{iv}	83.2(2)	N1-Cd6-O4 ⁱⁱⁱ	91.3(3)

Symmetry codes: ${}^{i}1-x$, -y, $-z^{ii}$, -1+x, -y, $+z^{iii}$; 1+x, 1+y, +z

Complex 3

			-		
Co1-O1	2.056(4)	Co1-O8 ^v	2.052(4)	Co2-O5 ⁱⁱⁱ	2.191(4)
Co1-O1 ⁱ	2.056(4)	Co2-O2	2.064(4)	Co2-O6 ⁱⁱⁱ	2.124(4)
Co1-O5 ⁱⁱ	2.107(4)	Co1-O8 ^{iv}	2.052(4)	Co2-O9 ^{iv}	1.969(5)
Co1-O5 ⁱⁱⁱ	2.107(4)				
O1-Co1-O1 ⁱ	180.0	O8iv-Co1-O5iii	89.53(17)	N1-Co2-O5 ⁱⁱⁱ	158.34(17)
O1-Co1-O5 ⁱⁱ	87.85(16)	O8v-Co1-O5iii	90.47(17)	N1-Co2-O6iii	98.26(17)
O1 ⁱ -Co1-O5 ⁱⁱ	92.15(15)	O8v-Co1-O8iv	180.0	N1-Co2-N3	94.7(3)
O1 ⁱ -Co1-O5 ⁱⁱⁱ	87.85(16)	O2-Co2-O5 ⁱⁱⁱ	94.92(16)	O8v-Co1-O5ii	89.53(17)
O1-Co1-O5 ⁱⁱⁱ	92.15(16)	O2-Co2-O6 ⁱⁱⁱ	101.59(19)	O9v-Co2-N3	73.1(4)
O5 ⁱⁱⁱ -Co1-O5 ⁱⁱ	180.00(12)	O2-Co2-N3	172.8(4)	Co1vi-O5-Co2v	110.27(17)
O8 ^{iv} -Co1-O1	86.91(18)	O5 ⁱⁱⁱ -Co2-N3	82.6(3)	O9v-Co2-O5iii	98.20(17)
O8v-Co1-O1i	86.91(18)	O6 ⁱⁱⁱ -Co2-O5 ⁱⁱⁱ	60.10(15)	O9v-Co2-O6iii	150.0(2)
O8iv-Co1-O1i	93.09(18)	O6 ⁱⁱⁱ -Co2-N3	83.1(3)	O9 ^v -Co2-N1	101.55(18)
O8 ^v -Co1-O1	93.09(18)	O9 ^v -Co2-O2	100.7(2)	N1-Co2-O2	90.08(16)
O8 ^{iv} -Co1-O5 ⁱⁱ	90.47(17)				

 $Symmetry\ codes: {}^{i}-X, -Y, 2-Z;\ {}^{ii}1-X, 1-Y, 1-Z;\ {}^{iii}-1+X, -1+Y, 1+Z; {}^{iv}-1+X, +Y, 1+Z;\ {}^{v}1-X, -Y, 1-Z;\ {}^{v}i1+X, 1+Y, -1+Z;\ {}^{v}ii1+X, +Y, -1+Z;\ {}^{v}iii-1+X, -1+X, -1+X$

1-X,-Y,1-Z;^{ix}-1-X,-1-Y,2-Z

		Con	plex 4		
Zn1-O1 ⁱ	2.236(4)	Zn1-O9 ^v	2.283(4)	Zn2-O7 ⁱ	2.415(4)
Zn1-O1	2.236(4)	Zn1-O9 ^v	2.283(4)	Zn2-O10	2.186(4)
Zn1-O6 ⁱⁱ	2.292(3)	Zn2-O2	2.211(4)	Zn2-N1	2.357(6)
Zn1-O6 ⁱⁱⁱ	2.292(3)	Zn2-O6 ⁱⁱ	2.339(3)	Zn2-N2	2.340(5)
O1 ⁱ -Zn1-O1	180.0	O9v-Zn1-O6 ii	84.90(12)	O6 ⁱⁱⁱ -Zn2-N1	92.25(18)
O1-Zn1-O6 ii	90.37(13)	O9 iv-Zn1-O6 iii	84.90(12)	O6 iii-Zn2-N2	136.90(13)
O1 ⁱ -Zn1-O6 ⁱⁱⁱ	90.37(13)	O9 iv-Zn1-O9v	180.0	N2-Zn2-O7 iii	87.09(14)
O1 ⁱ -Zn1-O6 ⁱⁱ	89.63(13)	O2-Zn2-O6 iii	101.36(15)	N1-Zn2-O7 iii	94.99(19)
O1-Zn1-O6 iii	89.63(13)	O2-Zn2-O7 iii	155.63(15)	O10 ^v -Zn2-O2	92.08(16)
O1 ⁱ -Zn1-O9 ^{iv}	90.68(14)	O2-Zn2-N1	88.0(2)	O10v-Zn2-O6 iii	111.11(15)
O1-Zn1-O9 iv	89.32(14)	O2-Zn2-N2	116.52(16)	O10 ^v -Zn2-O7 ⁱⁱⁱ	94.70(16)
O1-Zn1-O9 ^v	90.68(14)	O9 iv-Zn1-O6 ii	95.10(12)	O10 ^v -Zn2-N1	156.1(2)
O1 ⁱ -Zn1-O9 ^v	89.32(14)	O6 iii-Zn2-O7 iii	54.42(12)	O10 ^v -Zn2-N2	88.30(18)
O6 iii-Zn1-O6 ii	180.0	N2-Zn2-N1	70.5(2)	O9v-Zn1-O6 iii	95.10(12)

Table S3. Related parameters in the sensing of Fe^{3+}/Cr^{3+} ions in 2 and 4.

_

	Quenching	Exponential equation	K _{sv}	The detection	
	rate		(M^{-1})	limit	
1 for	97.85%	L/I-15 05a9794[Fe3+] 1 02	7 8×104	1.02×10^{-3}	
Fe ³⁺	(0.200 mM)	10/1-13.036	/.8~10	1.02~10*	
1 for	98.25%	L/I-16 02 a7304[Cr3+] 16 64	8 2×104	0.63×10^{-3}	
Cr ³⁺	(0.200 mM)	10/1-10.956	8.3~10	9.03~10	
2 for	96.08%	I /I-15 62 -3183[Fe3+] 14 96	7.8×104	1.16×10-3	
Fe ³⁺	(0.300 mM)	$I_0/I = 13.03e^{3105[103+]} - 14.80$	7.8×104	1.10×10-5	
2 for	96.87%	L/I=1.04+102.56 [C=2+]	1.0×105	9.97×10-4	
Cr ³⁺	(0.300 mM)	$I_0/I = 1.04 \pm 102.56$ [Cf3+]	1.0×10 ⁵	8.8/×104	

Fig. S1. The IR spectra of the complexes 1-4.

Fig. S2. The 2D $[Co(Htcpb)]_n$ network based on $Htcpb^{3-}$ and Co^{II} ions.

Fig. S3. 1D $[Co(4bib)]_n$ wavy linear chain formed by bib and Co^{II} ions.

Fig. S4. PXRD patterns of the series complexes. Black: Simulated from the X–ray single–crystal data; Red: observed for the as–synthesized solids.

Fig. S5. The TG curve of complex 3.

Fig. S6. The TG and PXRD of 1 under varied conditions

Fig. S7. Temperature dependence of $\chi_M T$ and χ_M^{-1} for **2** (a) and **4** (b) at 1000

Fig. S8. Solid-state fluorescent emissions for H_3TCPB , bibp, bimb and 2 and 4 at room temperature.

Fig. S9. PXRD patterns of 2 for the simulated, as-synthesized and after treated by various conditions.

Fig. S10. PXRD patterns of 4 immersed in different solvents at room temperature.

Fig. S11. PXRD patterns of 4 immersed in different pH solutions.

Fig. S12. The PXRD patterns of 4 for the simulated, as-synthesized and after water treated samples.

Fig. S13. Effect on the emission spectra of **2** dispersed in H_2O upon incremental addition of Cr^{3+} cations(1 mM) and the fluorescence quenching nonlinearity relationship of Cr^{3+} .

Fig. S14. Effect on the emission spectra of **2** dispersed in H_2O upon incremental addition of Fe^{3+} cations(1 mM) and the fluorescence quenching nonlinearity relationship of Fe^{3+} .

Fig. S15. Effect on the emission spectra of 4 dispersed in H_2O upon incremental addition of Cr^{3+} cations(1 mM) and the fluorescence quenching nonlinearity relationship of Cr^{3+} .

Fig. S16. Effect on the emission spectra of **4** dispersed in H_2O upon incremental addition of Fe^{3+} cations(1 mM) and the fluorescence quenching nonlinearity relationship of Fe^{3+} .

Fig. S17. Quenching rate histograms of 2 and 4 for sensing Cr³⁺ caions up to five cycles.

Fig. S18. Quenching rate histograms of 2 and 4 for sensing Fe^{3+} caions up to five cycles.

Fig. S19. The response time of 2 and 4 towards Cr^{3+} (0.01 mol L⁻¹).

Fig. S20. The response time of 2 and 4 towards $Fe^{3+}(0.01 \text{ mol } L^{-1})$.

Fig. S21. The PXRD pattern of 2 after immerging in Fe³⁺/Cr³⁺.

Fig. S22. The PXRD pattern of 4 after immerging in Fe^{3+}/Cr^{3+} .

Fig. S23. Spectral overlap between the normalized emission spectrum of 2 and 4 and normalized absorption spectra of the Cr^{3+} and Fe^{3+} .