Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019

## **Supplementary Information**

## Synthesis of modulator-driven highly stable zirconium-fumarate frameworks and their mechanistic investigations for the adsorption of arsenite and arsenate from aqueous solutions

Subbaiah Muthu Prabhu<sup>a,b</sup>, Kancharla Srinivasarao<sup>a</sup>, Chang Min Park<sup>b</sup>,

## Keiko Sasaki<sup>a,\*</sup>

<sup>a</sup>Department of Earth Resources Engineering, Faculty of Engineering,

Kyushu University, Fukuoka 819-0395, Japan

<sup>b</sup>Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro,

Buk-gu, Daegu, 41566, South Korea

\*Corresponding Author: Prof. Keiko Sasaki

Tel: +81 92 802 3338; Fax: +81 92 802 3338.

E-mail addresses: keikos@mine.kyushu-u.ac.jp (K. Sasaki)

muthuprabhu@mine.kyushu-u.ac.jp (S. Muthu Prabhu)



Figure S1. <sup>1</sup>H NMR spectra of Zr-*fum* MOF of 0 eq BA and 5 eq BA as ferrocene as reference.



Figure S2. Nitrogen adsorption-desorption isotherms of the synthesized products under liquid nitrogen at 77 K.

| Materials       | BET SSA (m <sup>2</sup> /g) | Pore volume (cm <sup>3</sup> /g) | Avg. Pore size (nm) |
|-----------------|-----------------------------|----------------------------------|---------------------|
| Zr-fum-0 eq BA  | 260.4                       | 0.357                            | 3.358               |
| Zr-fum-1 eq BA  | 363.2                       | 0.120                            | 3.354               |
| Zr-fum-3 eq BA  | 483.9                       | 0.569                            | 3.058               |
| Zr-fum-5 eq BA  | 760.1                       | 0.700                            | 3.352               |
| Zr-fum-10 eq BA | 566.1                       | 0.334                            | 3.288               |

Table S1. Physicochemical analysis of synthesized materials



**Figure S3.** Pseudo-second-order kinetic models of (**a**)  $AsO_4^{3-}$  and (**b**)  $AsO_3^{3-}$  adsorption onto Zr*fum*-0 eq BA, Zr-*fum*-1 eq BA, Zr-*fum*-3 eq BA, Zr-*fum*-5 eq BA and Zr-*fum*-10 eq BA. Experimental conditions: Initial conc. = 2 mM  $AsO_4^{3-}$  and 1.6 mM  $AsO_3^{3-}$ , dose ratio = 1 g/L, agitation = 100 rpm, temp = 25 °C.



**Figure S4. (a)** Zeta potential at pH 6.8 and (b) Eh-pH diagram of the arsenic species and (c) residual ion concentration of Zr-*fum*-3 eq BA, Zr-*fum*-5 eq BA and Zr-*fum*-10 eq BA.



Figure S5. Effect of coexisting anions on synthesized Zr-fum-5 eq BA MOFs.



**Figure S6.** FTIR spectra of after adsorption of  $AsO_4^{3-}$  and  $AsO_3^{3-}$  using Zr-*fum*-5 eq BA and Zr-*fum*-10eq BA.



Figure S7. XPS spectra of after adsorption of AsO<sub>4</sub><sup>3-</sup> and AsO<sub>3</sub><sup>3-</sup> on Zr-*fum*-5 eq BA



**Figure S8.** Langmuir adsorption isotherm for Zr-*fum*-5 eq BA MOF (a) AsO<sub>4</sub><sup>3-</sup> and (b) AsO<sub>3</sub><sup>3-</sup> adsorption.