Supporting Information

Stanozolol-aromatic carboxylic acid crystalline complexes: flexible

tautomeric/ionization states and supramolecular synthons

Xiaojuan Wang ^{a,b}, Minmin Kong ^b, Duanxiu Li ^b, Jianhui Fang ^a, Zongwu Deng ^b and

Hailu Zhang ^{b,*}

^a College of Science, Shanghai University, shanghai 200444, P.R. China

^b Laboratory of Magnetic Resonance Spectroscopy and Imaging, Suzhou Institute of

Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China.

^{*}Corresponding author. Tel: +86-512-62872713, Fax: +86-512-62603079, E-mail: hlzhang2008@sinano.ac.cn.

Fig. S1 ¹H NMR spectra of STAN-GA. R_I: relative integrals of the ¹H signals.

(a)

(b)

(c)

(d)

Fig. S2 Thermal ellipsoid drawings of asymmetric units of STAN-DBA (a), STAN-DHA (b), STAN-PHA (c), and STAN-GA-CH₃CN-H₂O (d) at 50% probability level.

Fig. S3 Experimental and simulated powder XRD patterns of STAN-DBA (a-b), STAN-DHA (c-d), STAN-PHA (e-f), and STAN-GA-CH₃CN-H₂O (g-h).

Fig. S4 powder XRD patterns of STAN form II (a), STAN-GA (b), and GA (c),

Fig. S6 TG curves of STAN-GA-CH₃CN-H₂O.

Fig. S7 Powder XRD patterns of STAN-GA-CH₃CN-H₂O before (a) and after desolvent (b).

Fig. S8 ¹³C CP/MAS TOSS NMR spectra of STAN (a), STAN-DBA (b), STAN-DHA (c), STAN-PHA (d), STAN-GA (e), and STAN-GA-CH₃CN-H₂O (f).

Fig. S10 13 C CP/MAS NQS TOSS NMR spectra of STAN (a), STAN-DBA (b), STAN-DHA (c), STAN-PHA (d), STAN-GA (e), and STAN-GA-CH₃CN-H₂O (f).

Fig. S11 Powder XRD patterns of STAN before (a) and after (b) 10 days equilibration under 25°C/95% RH.

Sample -	Tautomer A			Tautomer B			STAN cation		
	C1	C2	C3	C1	C2	C3	C1	C2	C3
STAN II	Y	Y	Y	NQS	Y	NQS			
STAN-SAC							DFT	DFT	DFT
STAN-AH							Y	Y	Y
STAN-DBA							NQS,DFT	Y	Y
STAN-DHA				Y	NQS	Y			
STAN-PHA				NQS,DFT	Y	NQS			
STAN-GA	NQS	Y	*	-, NQS			Y	NQS	*
STAN-GA-CH3CN-				NQS	Y	Y	NQS	Y	Y

Table S1 Signal assignment processes (for C1-C3) for STAN and its complexes

* can not be accurately assigned

Y: can be assigned without assist;

NQS: can be assigned using NQS spectrum;

DFT: can be assigned using DFT calculation (Table S2);

-: can be excluded.

Table S2 Experimental	and theoretical ¹	³ C chemical shifts	(C1-C3)) for some STAN
-----------------------	------------------------------	--------------------------------	---------	-----------------

complex	es*
---------	-----

Sample	C1	C2	C3
STAN-SAC	131.9[130.4]	120.1[120.2]	141.5[139.7]
STAN-DBA	131.9/132.6[129.9/130.5]	118.7/119.2[118.0/119.8]	141.1[139.1/139.2]
STAN-PHA	136.4/137.8[135.3/137.6]	113.4/113.8[112.5/112.9]	139.6/139.0[139.1/138.9]

* Theoretical values are given in []. The calculation method can be found in CrystEngComm, 2014, 16, 3141.