Selective formation of ternary Cu–Ge–S nanostructures in solution

Michelle D. Regulacio,* Si Yin Tee, Suo Hon Lim, Zheng Zhang and Ming-Yong

Han*

Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore

Supporting Information

Fig. S1 (a) XRD pattern and (b) TEM image of the product obtained when the synthesis was carried out using 10 mL DDT as solvent. Note: Red pattern in (a) is from standard JCPDS file [01-081-8819] for Cu_{1.81}S (roxbyite).

Fig. S2 Particle size distribution for the as-prepared (a) Cu_8GeS_6 and (b) Cu_2GeS_3 nanostructures.

Fig. S3 (a) XRD pattern and (b) TEM image of the product obtained when the synthesis was carried out using 10 mL HDA as solvent. Note: Red pattern in (a) is from standard JCPDS file [03-065-5562] for cubic Cu₂GeS₃.

Fig. S4 EDX spectra of the nanostructures produced using the OM–DDT solvent system. The nanostructures were isolated at different stages of reaction: (a) after degassing at 100 °C for 10 min, (b) when the temperature reached 240 °C, (c) when the temperature reached 280 °C, and (d) after heating at 280 °C for 1 h.

Fig. S5 XRD patterns and TEM images of the copper sulfide nanostructures produced when $Cu(dedtc)_2$ was heated in the OM–DDT solvent system. The nanostructures were isolated at two reaction stages: (a,c) after degassing at 100 °C for 10 min, and (b,d) when the temperature reached 280 °C. Note: Red pattern is from standard JCPDS file [01-081-8819] for Cu_{1.81}S (roxbyite).

Fig. S6 High-resolution XPS analysis of the Cu₈GeS₆ nanostructures showing the Cu 2p (blue), Ge 3d (green) and S 2p (red) spectra. The two peaks at 932.3 and 952.3 eV, with a peak splitting of 20.0 eV, is characteristic of monovalent Cu.^{1–3} The peak centered at around 30.7 eV was similarly observed in XPS scans for tetravalent Ge in copper germanium sulfide compounds.^{4,5} The peaks at 161.8 and 163.1 eV are typical for sulfides in multinary sulfide compounds.^{1–5}

Fig. S7 EDX spectra of the nanostructures produced using OM as the only solvent. The nanostructures were isolated at different stages of reaction: (a) after degassing at 100 °C for 10 min, (b) when the temperature reached 200 °C, (c) when the temperature reached 280 °C, and (d) after heating at 280 °C for 1 h

Fig. S8 (a) XRD pattern and (b) TEM image of the product obtained after a solution of Cu(dedtc)₂ in OM was heated to 100 °C and degassed for 10 min. Note: Red pattern in (a) is from standard JCPDS file [42-0561] for CuS (covellite).

Fig. S9 High-resolution XPS analysis of the Cu₂GeS₃ nanostructures showing the Cu 2p (blue), Ge 3d (green) and S 2p (red) spectra. The peak positions are consistent with those previously reported for Cu₂GeS₃ nanocrystals,^{4,5} denoting that the oxidation states are Cu⁺, Ge⁴⁺ and S²⁻.

Fig. S10 XRD pattern of the nanostructures obtained when the amount of Ge precursor was increased such that the Cu:Ge precursor ratio is 1:1. In particular, 0.2 mmol each of Cu(dedtc)₂ and GeCl₂.dioxane were used. The solvent system is a mixture of 5 mL OM and 5 mL DDT. Red pattern is from standard JCPDS file [39-1202] for orthorhombic Cu₈GeS₆.

References

- 1 M. D. Regulacio, C. Ye, S. H. Lim, M. Bosman, E. Ye, S. Chen, Q.-H. Xu and M.-Y. Han. *Chem. Eur. J.*, 2012, **18**, 3127–3131.
- 2 C. Ye, M. D. Regulacio, S. H. Lim, Q.-H. Xu and M.-Y. Han. *Chem. Eur. J.*, 2012, **18**, 11258–11263.
- 3 M. D. Regulacio, C. Ye, S. H. Lim, Y. Zheng, Q.-H. Xu and M.-Y. Han. *CrystEngComm*, 2013, **15**, 5214–5217.
- 4 C. Dong, R. Ge, D. Yao, Z. Wu, Z. Wang, Y. Liu, B. Yang and H. Zhang. *CrystEngComm*, 2017, **19**, 6736–6743.
- 5 P. Ramasamy and J. Kim. Chem. Asian J., 2015, 10, 1468–1473.