Supporting Information

<u>The use of biocompatible crystalline substrates for heterogeneous nucleation</u> <u>and polymorphic selection of indomethacin</u>

Tharanga K. Wijethunga, Xingyu Chen, Allan S. Myerson and Bernhardt L. Trout*

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.

S1. Initial powder patterns for substrates

L-glutamic acid – β form (GLU)

L-Threonine (THR)

Allantoin (ALT)

Xanthine (XAN)

Biotin (BIO)

L-Histidine – Form A (HIS)

S2. Solubility of IMC in different solvents

S3. Microscopic setup used for high throughput induction time measurements

S4. Formation of IMC forms in the presence of HIS

Formation of a) γ -IMC and b) α -IMC attached to HIS crystals and their morphologies c) γ -IMC and d) α -IMC under light microscope

S5. PXRD patterns of IMC polymorphs

γ-form

α-form

S6. Raman spectra of IMC polymorphs

γ-form

α-form

S7. Association energy calculations

Possible binding pockets on each substrate molecule

Minimized energies for optimized individual molecules and molecular pairs

Compound	Minimized energy (kcal/mol)
IMC	+50.29
GLU	-7.52
THR	+29.00
XAN	-162.02
HIS	+21.54
ALT	-227.56
BIO	-110.78
IMC: GLU	+18.77
IMC: THR	+57.86
IMC: XAN	-131.70
IMC: HIS	+47.98
IMC: ALT	-202.54
IMC: BIO	-84.76

Molecular pair	ΔE (kcal/mol)
IMC:ALT	-25.27
IMC:BIO	-24.27
IMC:THR	-21.43
IMC:HIS	-21.41
IMC:GLU	-20.38
IMC:XAN	-19.97

Calculated association energies between IMC and substrates for the lowest energy pairs

Possible binding modes between IMC and ALT (Energies are provided in kcal/mol)

S8. Single crystals used for SCXRD and Raman library building

 $IMC - \gamma$ form

Crystal 1

Crystal 2

Crystal 3

HIS

Crystal 1

Crystal 2

Crystal 3

GLU

S9. Induction experiments – full data sets for logarithmic fit

Overall nucleation of IMC

Nucleation of α -from IMC

S10. Association energy calculations between IMC conformations, GLU and HIS

a) Trans and b) cis orientations of carboxylic acid and Cl functional groups in IMC $\gamma\text{-}$ and $\alpha\text{-}$ form

Minimized energies for optimized individual molecules and molecular pairs between IMC conformations, GLU and HIS

Compound	Minimized energy (kcal/mol)
trans-IMC	+50.29
<i>cis</i> -IMC	+51.64
GLU	-7.52
HIS	+21.54
trans-IMC:GLU	+18.77
cis-IMC:GLU	+20.47
trans-IMC :HIS	+52.65
cis-IMC :HIS	+47.98

Calculated association energies between different IMC conformations with GLU and HIS

Combination of compounds	ΔE (kcal/mol)
trans-IMC:GLU	-24.00
cis-IMC:GLU	-23.65
trans-IMC :HIS	-19.18
cis-IMC :HIS	-25.20

S11. Induction times - Effect of supersaturation on IMC polymorph distribution

supersaturation	Overall		γ-form		α-form	
	Induction	\mathbf{R}^2	Induction	\mathbf{R}^2	Induction	\mathbf{R}^2
	time (min)	R	time (min)	R	time (min)	R
5	345	0.94	1111	0.96	555	0.84
5.5	200	0.93	1000	0.88	294	0.87
6	38	0.97	833	0.97	40	0.97
6.5	19	0.99	106	0.95	39	0.93
7	12	0.91	96	0.95	26	0.98

S12. Effect of solvent system

Polymorphic distribution

Salmant			Condition Percentage		Polymorphic distribution in the crystallized vials			
Solvent	Supersaturation	Condition	crystallized	γ-form	α-form	Solvata	Mixturo	
			in 24 hours	only	only	Solvate	WIIXture	
Ethonol	6	Bulk	27.25%	51.37%	42.20%	N/A	6.43%	
Ethanoi	0	With HIS	91.25%	20.54%	75.35%	N/A	4.11%	
Acatona	Acetone 2	Bulk	60%	0%	0%	100%	0%	
Acetone		With HIS	82.5%	0%	0%	100%	0%	
Mathanal	6	Bulk	51.28%	2.5%	2.5%	97.5%	0%	
Methanoi	vietnanoi o	With HIS	73.41%	22.41%	0%	77.59%	0%	
Ethyl	6	Bulk	80%	78.09%	18.75%	0%	3.16%	
acetate	0	With HIS	97.5%	71.79%	24.35%	0%	3.84%	
Eth:ace	ce a	Bulk	82.5%	67%	0%	33%	0%	
1:1	2	With HIS	23.75%	0%	0%	100%	0%	

Induction time

			Overa	11	γ-form		α-form	
Solvent	Supersaturation	Condition	Induction		Induction		Induction	
Solvent	Supersaturation	Condition	time	\mathbb{R}^2	time	\mathbb{R}^2	time	\mathbb{R}^2
			(min)		(min)		(min)	
Ethanol	6	Bulk	322	0.90	434	0.95	1000	0.90
Luianoi	0	With HIS	38	0.97	833	0.97	40	0.97
Asstans	2	Bulk	97	0.72	N/A	N/A	N/A	N/A
Acetone	2	With HIS	73	0.92	N/A	N/A	N/A	N/A
Mathanal	6	Bulk	312	0.92	N/A	N/A	N/A	N/A
Methanol	0	With HIS	116	0.82	1250	0.92	N/A	N/A
Ethyl	6	Bulk	17	0.92	19	0.89	435	0.77
acetate	0	With HIS	40	0.81	58	0.71	175	0.75
Eth:ace	2	Bulk	82	0.99	117	0.96	N/A	N/A
1:1	2	With HIS	666	0.91	N/A	N/A	N/A	N/A

S13. Raman Face indexing

Comparison of Raman spectra obtained for each family of faces between different crystals

Compound	Face	Identifier description
_	family	
	{101}	Peak at 412 is more intense than peak at 432
		Peak at 630 is more intense than peak at 617
		No peak at 653
		Peak at 701 has a shoulder
		Peak at 756 is less intense than peak at 767
		No peak at 1138
	{100}	Peak at 412 is less intense than peak at 432
		Peak at 630 is less intense than peak at 617
		Peak present at 653
		Single peak at 701 without a shoulder
		Peak at 756 is more intense than peak at 767
~ IMC		Peak present at 1138
γ-nviC	{001}	Peak at 412 is less intense than peak at 432
		Peak at 630 is almost equal in intensity to peak at 617
		Peak present at 653
		Single peak at 701 without a shoulder
		Peak at 756 is more intense than peak at 767
		Peak present at 1138
	{-101}	Peak at 412 is more intense than peak at 432
		Peak at 630 is more intense than peak at 617
		Peak present at 653
		Peak at 701 has a shoulder
		Peak at 756 is more intense than peak at 767
		No peak at 1138
	{001}	Peak at 783 is less intense than peak at 805
		No peak at 834
		Peak at 918 is more intense than peak at 932
		Peak at 962 is more intense than peak at 9/5
	(011)	Peak at 1087 is more intense than peaks at 1061 and 1111
	{011}	Peak at 783 is more intense than peak at 805
THO		Peak present at 834
HIS		Peak at 918 is more intense than peak at 932
		Peak at 962 is less intense than peak at 975
	(101)	Peak at 1087 is more intense than peaks at 1001 and 1111
	{101}	Peak at 783 is more intense than peak at 805
		No peak at 054 Deak at 018 is less intense then peak at 022
		Peak at 918 is less intense than peak at 952 Deak at 962 is less intense than peak at 975
		Peak at 702 is less intense than peak at 7/3
	(010)	No pools at 576
CLU	{010}	Dools at 762 is more intense than near at 709 loss intense than near
GLU		r cak at 702 is more intense than peak at 708, less intense than peak
		at 602

Unique distinguishable identifiers for each face family for each compound

	Peak at 942 is more intense than peak at 969
	No peak at 1062
{011}	Peak present at 576
	Peak at 762 is less intense than peaks at 708 and 802
	Peak at 942 is less intense than peak at 969
	Peak present at 1062
{101}	Peak present at 576
	Peak at 762 is more intense than peaks at 708 and 802
	Peak at 942 is more intense than peak at 969
	Peak present at 1062

S14. Morphology prediction and analysis of surface functional groups

The exact surface area values are not available for experimentally analyzed crystals. Thus, in the following analysis, the faces are ranked according to the relative surface areas (highest to lowest) of experimentally analyzed crystals. For example, in the γ -IMC, for all the experimentally analyzed crystals, (010) family faces had the highest relative surface area (SI S6). The functional group analysis was conducted to a constant area of 20x20 Å² for a comparable analysis.

γ-IMC

Predicted faces	Experimental faces (sorted in the order of surface area)	Available functional groups in 20x20 \mathring{A}^2
{ 0 1 0}	{ 0 1 0}	COOH (8), Cl (6), C=O (6), O-CH ₃ (8)
{ 1 0 0}	{ 1 0 0}	COOH (8), Cl (6), C=O (6), O-CH ₃ (6)
{ 1 0 -1}	{ 1 0 -1}	COOH (5), Cl (6), C=O (5), O-CH3 (6)
{ 0 0 1}	{ 0 0 1}	COOH (6), Cl (9), C=O (9), O-CH3 (6)
{ 1 1 1}	{ 1 1 1}	COOH (5), Cl (9), C=O (9), O-CH3 (6)
{ 0 1 1}	N/A	N/A
{ 1 1 0}	N/A	N/A
{ 1 0 1}	N/A	N/A
{ 1 1 -1}	N/A	N/A
{ 1 -1 -1}	N/A	N/A

N/A- did not observe in experimentally obtained crystals

{ 1 0 -1} COOH groups are exposed

{ 1 1 1} COOH groups are covered

{ 1 0 0} COOH groups are covered

{ 0 0 1} COOH groups are covered

α-IMC

Predicted faces	Available functional groups in 20x20 \AA^2
$\{ 0 0 1 \}$	COOH (4), Cl (6), C=O (0), O-CH ₃ (4)
$\{ 0 1 1 \}$	COOH (5), Cl (0), C=O (8), O-CH ₃ (4)
{ 0-1 1}	COOH (0), Cl (17), C=O (9), O-CH ₃ (4)
$\{ 0 2 0 \}$	COOH (9), Cl (0), C=O (9), O-CH ₃ (9)
{ 0-2 0}	COOH (8), Cl (18), C=O (8), O-CH ₃ (0)
$\{ 1 0 0 \}$	COOH (4), Cl (4), C=O (4), O-CH ₃ (5)
{ 1 1 -1}	COOH (6), Cl (3), C=O (5), O-CH ₃ (6)
{ 1 -1 -1}	COOH (5), Cl (8), C=O (4), O-CH ₃ (6)
{ 1 0 1}	COOH (4), Cl (5), C=O (3), O-CH ₃ (4)

Predicted faces	Experimental faces (sorted in the order of surface area)	Available functional groups in 20x20 \mathring{A}^2
$\{ 0 2 0 \}$	$\{ 0 1 0 \}$	COOH (9), COO ⁻ (16)
{ 0 1 1}	$\{ 0 1 1 \}$	COOH (5), COO ⁻ (4)
{ 1 0 1}	$\{1 0 1\}$	COOH (3), COO ⁻ (8)
{ 1 1 1}	{ 1 1 1}	COOH (5), COO ⁻ (10)
$\{1, 1, 0\}$	N/A	N/A

N/A- did not observe in experimentally obtained crystals

$\{ 0 1 0 \}$

{ 1 0 1} COOH groups are covered

HIS

Predicted faces	Experimental faces (sorted in the order of surface area)	Available functional groups in 20x20 Å ²
$\{ 0 0 2 \}$	{ 0 0 1}	COO ⁻ (12), N _{imid} (12)
{ 0 1 1}	{ 0 1 1}	$COO^{-}(5), N_{imid}(0)$
{ 1 0 1}	{ 1 0 1}	COO ⁻ (6), N _{imid} (7)
{ 1 1 1}	{ 1 1 1}	COO ⁻ (8), N _{imid} (7)
{ 1 1 -1}	{ 1 1 -1}	COO ⁻ (13), N _{imid} (3)
{ 1 1 0}	{ 1 1 0}	COO ⁻ (10), N _{imid} (3)

$\{ 0 0 2 \}$	$\{ 0 \ 1 \ 1 \}$
COO- and N _{imid} groups are exposed	COO- and N_{imid} groups are exposed

 $\{ 1 \ 0 \ 1 \}$ COO- and N_{imid} groups are exposed

 $\{ \ 1 \ 1 \ -1 \}$ COO- and N_{imid} groups are exposed

 $\{ \begin{array}{ccc} 1 & 1 & 1 \\ \text{COO- and } N_{\text{imid}} \text{ groups are exposed} \end{array}$

 $\{ \ 1 \ 1 \ 0 \}$ COO- and N_{imid} groups are exposed

