Supporting information

Three layer-structured cadmium coordination polymers based on flexible

5-(4-pyridyl)-methoxyl isophthalic acid: rapid synthesis and luminescence

sensing

Solvothermal syntheses of 1-3	S3
Fig. S1 The simulated and experimental PXRD patterns of 1 (a), 2 (b), 3 (c).	S5
Fig. S2 IR spectra of 1-3 .	S6
Fig. S3 Structure of 3 viewed along the <i>b</i> axis direction.	S7
Fig. S4 Coordination modes of H ₂ L	S8
Fig. S5 PXRD patterns for ${f 1}$ (a), ${f 2}$ (b) and ${f 3}$ (c) after soaking in various solvents.	S9
Fig. S6 TGA curves of 1-3 measured in air atmosphere.	S10
Fig. S7 The solid-state excitation and emission fluorescence spectra of	S11
H ₂ L ligand (a), 1-3 (b).	
Fig. S8 The luminescent spectra of 1a (a), 2a (b) and 3a (c) in aqueous	S12
solutions of diverse metal ions.	
Fig. S9 PXRD patterns for 1a (a), 2a (b) and 3a (c) after soaking in	S13
different metal ions aqueous solutions.	
Fig. S10 The EDS-mapping images and the corresponding EDS spectra for	S14
Fe ³⁺ @ 1a (a), Fe ³⁺ @ 2a (b) and Fe ³⁺ @ 3a (c), respectively.	
Fig. S11 The EDS-mapping images and the corresponding EDS spectra for	S15
Fe ³⁺ @1a (a), Fe ³⁺ @2a (b) and Fe ³⁺ @3a (c) after washing with deionized	
water for several times.	
Fig. S12 The corrected UV-vis absorption spectra of 1-3 and various metal	S16
ions and the excitation spectrum of 1-3 .	
Fig. S13 The corrected UV-vis absorption spectra of Fe^{3+} aqueous	S17
solutions and emission spectra of 1-3 .	

Table of content

Table S1 Crystallographic data and structure refinement for CPs 1-3.	S18
Table S2 Selected bond lengths [Å] and angles [°] for 1-3 .	S19
Table S3 Comparisons between 1-3 and some reported coordination	S21
polymers.	
Table S4 The comparison of K_{sv} between 1-3 and other reported probes	S22
for the detection of Fe ³⁺ .	

Solvothermal syntheses of 1-3

[CdL(H₂O)]·2H₂O (1). H₂L (0.014 g, 0.05 mmol) and Cd(NO₃)₂·4H₂O (0.024 g, 0.1 mmol) were dissolved in the solution of DMF (3 mL), H₂O (3 mL) and HNO₃ (100 μ l, 0.1 mmol), then the mixture was sealed in a 25 ml of glass bottle and heated at 90 °C for 72 h. Finally, the mixture was gradually cooled to room temperature, resulting in colorless block-like crystals that were isolated by washing with deionized water several times and dried in air. The yield of **1** was 90.6 % based on H₂L. Anal. Calcd for C₁₄H₁₅NO₈Cd: C, 38.39 %; H, 3.43 %; N, 3.20 %. Found: C 38.56 %; H, 3.34 %; N, 3.57 %.

[CdL(H₂O)(4,4'-bipy)_{0.5}]·H₂O (2). The mixture of Cd(NO₃)₂·4H₂O (0.024 g, 0.1 mmol), H₂L (0.014 g, 0.05 mmol), 4,4'-bipy (0.0078 g, 0.05 mmol), H₂O (5 ml), DMF (1 ml) and HNO₃ (250 µl, 0.25 mmol) was added to a 25 ml of glass bottle, and was heated at 95 °C for 3 days. Then, the reaction mixture was slowly cooled to room temperature. Colorless crystals of **2** were collected from the final reaction system by filtration, washed several times with deionized water, and dried in air at ambient temperature. (Yield: 81.1 % based on H₂L). Anal. Calcd for C₁₉H₁₇N₂O₇Cd: C, 45.81 %; H, 3.42 %; N, 5.63 %. Found: C 45.36 %; H, 3.31%; N, 5.78%.

[CdL(H₂O)₂]·0.5H₂bdc (3). Cd(NO₃)₂·4H₂O (0.024 g, 0.1 mmol), H₂L (0.014 g, 0.05 mmol) and terephthalic acid (0.008 g, 0.05 mmol) were successively dissolved in the solution of DMF (2 mL) and H₂O (4 mL). Then the mixture was sealed in a Teflon-lined stainless steel container and heated at 100 °C for 3 days, and then it was gradually cooled to room temperature, resulting in colorless block-like crystals that

were isolated by washing with deionized water and dried at room temperature. (Yield: 87.8 % based on H_2L). Anal. Calcd for $C_{18}H_{16}NO_9Cd$: C, 42.97 %; H, 3.18 %; N, 2.78 %. Found: C 43.06 %; H, 3.22 %; N, 2.65 %.

Fig. S1The simulated and experimental PXRD patterns of 1 (a), 2 (b), 3 (c).

Fig. S3 The structure of 3 viewed along the b axis direction, showing the hexagonal windows and occluded with free H₂bdc molecules.

Fig. S4 Coordination modes of H_2L

Fig. S5 PXRD patterns for 1 (a), 2 (b) and 3 (c) after soaking in various solvents.

Fig. S6 TGA curves of 1-3 measured in air atmosphere.

Fig. S7 The solid-state excitation and emission fluorescence spectra of H_2L ligand (a), 1-3 (b).

Fig. S8 The luminescent spectra of 1a (a), 2a (b) and 3a (c) in aqueous solutions of diverse metal ions.

Fig. S9 PXRD patterns for 1a (a), 2a (b) and 3a (c) after soaking in different metal ions aqueous solutions.

Fig. S10 The EDS-mapping images and the corresponding EDS spectra for $Fe^{3+}@1a$ (a), $Fe^{3+}@2a$ (b) and $Fe^{3+}@3a$ (c), respectively.

Fig. S11 The EDS-mapping images and the corresponding EDS spectra for $Fe^{3+}@1a$ (a), $Fe^{3+}@2a$ (b) and $Fe^{3+}@3a$ (c) after washing with deionized water for several times.

Fig. S12 The corrected UV-vis absorption spectra of 1-3 and various metal ions.

Fig. S13 The corrected UV-vis absorption spectra of Fe3+ aqueous solution andemissionspectraof1-3.

Compound	1	2	3
Formula	$C_{14}H_{11}CdNO_6$	$C_{19}H_{15}CdN_2O_7$	$C_{18}H_{16}NO_9Cd$
Formula weight	401.65	495.74	502.73
Temperature (K)	293(2)	293(2)	293(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Triclinic
Space group	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1
a (Å)	7.5577(4)	8.1208(16)	7.6825(4)
b (Å)	9.9980(5)	10.241(2)	10.0737(4)
<i>c</i> (Å)	12.2600(6)	12.376(3)	13.2714(6)
α (°)	75.4320(10)	106.79(3)	70.5440(10)
<i>6</i> (°)	79.5900(10)	99.48(3)	89.008(2)
γ (°)	69.4910(10)	104.10(3)	74.231(2)
V (ų)	835.39(7)	924.6(3)	928.96(7)
Ζ	2	2	2
D_c (g·cm ⁻³)	1.537	1.781	1.797
μ (mm⁻¹)	1.325	1.228	1.229
F(000)	370	494	502
ϑ range (º)	2.22 - 25.11	3.26 - 24.15	2.23 - 34.20
Reflections collected	7280	5878	15317
Unique reflections	2955	2838	7639
R _{int}	0.0223	0.0519	0.0609
Data / restraints /	2955 / 9 / 222	2838 / 9 / 270	7639 / 0 / 290
parameters			
Gof	1.160	0.999	1.013
$R_{1},[I>2\sigma(I)]$	0.0389	0.0472	0.0618
wR ₁ ,[<i>I</i> >2σ(<i>I</i>)]	0.1277	0.0979	0.0849
R ₁ (all data)	0.0424	0.0634	0.1312
R_2 (all data)	0.1305	0.1053	0.0996
CCDC No.	1851221	1851228	1851229

Table S1 Crystallographic data and structure refinement for CPs 1-3.

		1		
Cd(1)-O(1)	2.2696(19)	O(5)#2-Cd(1)-O(4)	81.82(9)	
Cd(1)-N(1)#1	2.293(2)	O(1)-Cd(1)-O(6)#3	91.12(8)	
Cd(1)-O(5)#2	2.301(2)	N(1)#1-Cd(1)-O(6)#3	89.07(7)	
Cd(1)-O(4)	2.310(2)	O(5)#2-Cd(1)-O(6)#3	97.81(7)	
Cd(1)-O(6)#3	2.419(2)	O(4)-Cd(1)-O(6)#3	172.15(8)	
Cd(1)-O(3)	2.599(2)	O(1)-Cd(1)-O(3)	53.12(6)	
Cd(1)-O(6)#2	2.610(2)	N(1)#1-Cd(1)-O(3)	86.49(7)	
O(5)-Cd(1)#4	2.301(2)	O(5)#2-Cd(1)-O(3)	136.24(7)	
O(6)-Cd(1)#3	2.419(2)	O(4)-Cd(1)-O(3)	81.41(8)	
O(6)-Cd(1)#4	2.610(2)	O(6)#3-Cd(1)-O(3)	103.86(7)	
N(1)-Cd(1)#5	2.293(2)	O(1)-Cd(1)-O(6)#2	132.68(7)	
O(1)-Cd(1)-N(1)#1	138.32(8)	N(1)#1-Cd(1)-O(6)#2	86.24(7)	
O(1)-Cd(1)-O(5)#2	89.39(7)	O(5)#2-Cd(1)-O(6)#2	52.60(7)	
N(1)#1-Cd(1)-O(5)#2	131.83(8)	O(4)-Cd(1)-O(6)#2	103.23(8)	
O(1)-Cd(1)-O(4)	96.72(9)	O(6)#3-Cd(1)-O(6)#2	70.77(7)	
N(1)#1-Cd(1)-O(4)	85.43(9)	O(3)-Cd(1)-O(6)#2	171.03(6)	
Symmetry transforma	tions used to ger	nerate equivalent atoms:		
#1 x-1, y, z+1; #2 x-1	L, γ+1, z; #3 -x, ·	-y+1, -z+2; #4 x+1, y-1, z;	#5 x+1, y, z-1	
2				
		2		
N(1)-Cd(1)#1	2.314(5)	2 O(5)#4-Cd(1)-O(1)	86.31(19)	
N(1)-Cd(1)#1 Cd(1)-O(2)	2.314(5) 2.308(4)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1)	86.31(19) 90.6(2)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5	2.314(5) 2.308(4) 2.314(5)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2)	86.31(19) 90.6(2) 83.62(19)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5 Cd(1)-O(1)	2.314(5) 2.308(4) 2.314(5) 2.339(6)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2) O(5)#4-Cd(1)-N(2)	86.31(19) 90.6(2) 83.62(19) 87.20(18)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5 Cd(1)-O(1) Cd(1)-N(2)	2.314(5) 2.308(4) 2.314(5) 2.339(6) 2.363(6)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2) O(5)#4-Cd(1)-N(2) N(1)#5-Cd(1)-N(2)	86.31(19) 90.6(2) 83.62(19) 87.20(18) 96.5(2)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5 Cd(1)-O(1) Cd(1)-N(2) Cd(1)-O(3)	2.314(5) 2.308(4) 2.314(5) 2.339(6) 2.363(6) 2.561(4)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2) O(5)#4-Cd(1)-N(2) N(1)#5-Cd(1)-N(2) O(1)-Cd(1)-N(2)	86.31(19) 90.6(2) 83.62(19) 87.20(18) 96.5(2) 172.57(18)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5 Cd(1)-O(1) Cd(1)-N(2) Cd(1)-O(3) Cd(1)-O(4)#4	2.314(5) 2.308(4) 2.314(5) 2.339(6) 2.363(6) 2.561(4) 2.620(5)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2) O(5)#4-Cd(1)-N(2) N(1)#5-Cd(1)-N(2) O(1)-Cd(1)-N(2) O(2)-Cd(1)-O(3)	86.31(19) 90.6(2) 83.62(19) 87.20(18) 96.5(2) 172.57(18) 53.44(13)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5 Cd(1)-O(1) Cd(1)-N(2) Cd(1)-O(3) Cd(1)-O(3) Cd(1)-O(4)#4 O(4)-Cd(1)#3	2.314(5) 2.308(4) 2.314(5) 2.339(6) 2.363(6) 2.561(4) 2.620(5) 2.620(5)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2) O(5)#4-Cd(1)-N(2) N(1)#5-Cd(1)-N(2) O(1)-Cd(1)-N(2) O(2)-Cd(1)-O(3) O(5)#4-Cd(1)-O(3)	86.31(19) 90.6(2) 83.62(19) 87.20(18) 96.5(2) 172.57(18) 53.44(13) 138.11(15)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5 Cd(1)-O(1) Cd(1)-N(2) Cd(1)-O(3) Cd(1)-O(3) Cd(1)-O(4)#4 O(4)-Cd(1)#3 O(5)-Cd(1)#3	2.314(5) 2.308(4) 2.314(5) 2.339(6) 2.363(6) 2.561(4) 2.620(5) 2.620(5) 2.315(4)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2) O(5)#4-Cd(1)-N(2) N(1)#5-Cd(1)-N(2) O(1)-Cd(1)-N(2) O(2)-Cd(1)-O(3) O(5)#4-Cd(1)-O(3) N(1)#5-Cd(1)-O(3)	86.31(19) 90.6(2) 83.62(19) 87.20(18) 96.5(2) 172.57(18) 53.44(13) 138.11(15) 87.56(17)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5 Cd(1)-O(1) Cd(1)-N(2) Cd(1)-O(3) Cd(1)-O(3) Cd(1)-O(4)#4 O(4)-Cd(1)#3 O(5)-Cd(1)#3 O(2)-Cd(1)-O(4)#4	2.314(5) 2.308(4) 2.314(5) 2.339(6) 2.363(6) 2.561(4) 2.620(5) 2.620(5) 2.315(4) 134.97(15)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2) O(5)#4-Cd(1)-N(2) O(1)-Cd(1)-N(2) O(2)-Cd(1)-N(2) O(2)-Cd(1)-O(3) O(5)#4-Cd(1)-O(3) N(1)#5-Cd(1)-O(3) O(1)-Cd(1)-O(4)#4	86.31(19) 90.6(2) 83.62(19) 87.20(18) 96.5(2) 172.57(18) 53.44(13) 138.11(15) 87.56(17) 81.7(3)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5 Cd(1)-O(1) Cd(1)-N(2) Cd(1)-O(3) Cd(1)-O(3) Cd(1)-O(4)#4 O(4)-Cd(1)#3 O(5)-Cd(1)#3 O(2)-Cd(1)-O(4)#4 O(2)-Cd(1)-O(5)#4	2.314(5) 2.308(4) 2.314(5) 2.339(6) 2.363(6) 2.561(4) 2.620(5) 2.620(5) 2.315(4) 134.97(15) 84.67(16)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2) O(5)#4-Cd(1)-N(2) O(1)-Cd(1)-N(2) O(2)-Cd(1)-N(2) O(2)-Cd(1)-O(3) O(5)#4-Cd(1)-O(3) N(1)#5-Cd(1)-O(3) O(1)-Cd(1)-O(4)#4 O(1)-Cd(1)-O(3)	86.31(19) 90.6(2) 83.62(19) 87.20(18) 96.5(2) 172.57(18) 53.44(13) 138.11(15) 87.56(17) 81.7(3) 94.2(2)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5 Cd(1)-O(1) Cd(1)-N(2) Cd(1)-O(3) Cd(1)-O(3) Cd(1)-O(4)#4 O(4)-Cd(1)#3 O(5)-Cd(1)#3 O(2)-Cd(1)-O(4)#4 O(2)-Cd(1)-O(5)#4 O(3)-Cd(1)-O(4)#4	2.314(5) 2.308(4) 2.314(5) 2.339(6) 2.363(6) 2.561(4) 2.620(5) 2.620(5) 2.315(4) 134.97(15) 84.67(16) 170.44(15)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2) O(5)#4-Cd(1)-N(2) O(1)-Cd(1)-N(2) O(2)-Cd(1)-O(3) O(5)#4-Cd(1)-O(3) N(1)#5-Cd(1)-O(3) O(1)-Cd(1)-O(4)#4 O(1)-Cd(1)-O(4)#4	86.31(19) 90.6(2) 83.62(19) 87.20(18) 96.5(2) 172.57(18) 53.44(13) 138.11(15) 87.56(17) 81.7(3) 94.2(2) 97.0(2)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5 Cd(1)-O(1) Cd(1)-N(2) Cd(1)-O(3) Cd(1)-O(3) Cd(1)-O(4)#4 O(4)-Cd(1)#3 O(5)-Cd(1)#3 O(2)-Cd(1)-O(4)#4 O(2)-Cd(1)-O(5)#4 O(3)-Cd(1)-O(4)#4 O(5)#4-Cd(1)-N(1)#5	2.314(5) 2.308(4) 2.314(5) 2.339(6) 2.363(6) 2.561(4) 2.620(5) 2.620(5) 2.315(4) 134.97(15) 84.67(16) 170.44(15) 134.33(19)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2) O(5)#4-Cd(1)-N(2) O(1)-Cd(1)-N(2) O(2)-Cd(1)-N(2) O(2)-Cd(1)-O(3) O(5)#4-Cd(1)-O(3) N(1)#5-Cd(1)-O(3) O(1)-Cd(1)-O(4)#4 O(1)-Cd(1)-O(4)#4 N(1)#5-Cd(1)-O(4)#4	86.31(19) 90.6(2) 83.62(19) 87.20(18) 96.5(2) 172.57(18) 53.44(13) 138.11(15) 87.56(17) 81.7(3) 94.2(2) 97.0(2) 83.89(19)	
N(1)-Cd(1)#1 Cd(1)-O(2) Cd(1)-N(1)#5 Cd(1)-O(1) Cd(1)-N(2) Cd(1)-O(3) Cd(1)-O(3) Cd(1)-O(4)#4 O(4)-Cd(1)#3 O(5)-Cd(1)#3 O(2)-Cd(1)-O(4)#4 O(2)-Cd(1)-O(5)#4 O(3)-Cd(1)-O(4)#4 O(5)#4-Cd(1)-N(1)#5	2.314(5) 2.308(4) 2.314(5) 2.339(6) 2.363(6) 2.561(4) 2.620(5) 2.620(5) 2.315(4) 134.97(15) 84.67(16) 170.44(15) 134.33(19) 141.00(17)	2 O(5)#4-Cd(1)-O(1) N(1)#5-Cd(1)-O(1) O(2)-Cd(1)-N(2) O(5)#4-Cd(1)-N(2) O(1)-Cd(1)-N(2) O(2)-Cd(1)-O(3) O(5)#4-Cd(1)-O(3) N(1)#5-Cd(1)-O(3) N(1)-Cd(1)-O(3) N(2)-Cd(1)-O(4)#4 N(1)#5-Cd(1)-O(4)#4 N(2)-Cd(1)-O(3)	86.31(19) 90.6(2) 83.62(19) 87.20(18) 96.5(2) 172.57(18) 53.44(13) 138.11(15) 87.56(17) 81.7(3) 94.2(2) 97.0(2) 83.89(19) 88.24(17)	

 Table S2 Selected bond lengths [Å] and angles [°] for 1-3.

Symmetry transformations used to generate equivalent atoms:

#1 x-1, y-1, z-1; #2 -x+2, -y+2, -z; #3 x, y-1, z; #4 x, y+1, z; #5 x+1, y+1, z+1

3				
N(1)-Cd(1)#1	2.288(2)	O(4)-Cd(1)-O(1)	93.26(10)	
Cd(1)-N(1)#4	2.288(2)	N(1)#4-Cd(1)-O(6)#5	141.31(8)	
Cd(1)-O(2)	2.291(3)	O(2)-Cd(1)-O(6)#5	99.51(12)	
Cd(1)-O(4)	2.2980(19)	O(4)-Cd(1)-O(6)#5	79.70(7)	
Cd(1)-O(1)	2.309(3)	O(1)-Cd(1)-O(6)#5	90.27(11)	
Cd(1)-O(6)#5	2.329(2)	N(1)#4-Cd(1)-O(5)#5	87.40(8)	
Cd(1)-O(5)#5	2.442(2)	O(2)-Cd(1)-O(5)#5	92.74(11)	
Cd(1)-O(3)	2.630(2)	O(4)-Cd(1)-O(5)#5	133.17(7)	
O(6)-Cd(1)#2	2.329(2)	O(1)-Cd(1)-O(5)#5	95.25(10)	
O(5)-Cd(1)#2	2.442(2)	O(6)#5-Cd(1)-O(5)#5	54.35(7)	
N(1)#4-Cd(1)-O(2)	86.65(11)	N(1)#4-Cd(1)-O(3)	87.07(8)	
N(1)#4-Cd(1)-O(4)	139.00(8)	O(2)-Cd(1)-O(3)	86.88(11)	
O(2)-Cd(1)-O(4)	85.81(10)	O(4)-Cd(1)-O(3)	52.32(7)	
O(5)#5-Cd(1)-O(3)	174.46(7)	N(1)#4-Cd(1)-C(8)#5	114.55(9)	
N(1)#4-Cd(1)-O(1)	87.45(10)	O(1)-Cd(1)-O(3)	84.56(10)	
O(2)-Cd(1)-O(1)	169.83(12)	O(6)#5-Cd(1)-O(3)	131.16(7)	
Symmetry transformations used to generate equivalent atoms:				

#1 x, y, z-1; #2 x, y-1, z; #3 -x+1, -y+1, -z; #4 x, y, z+1; #5 x, y+1, z

compounds	- crystal space compounds crystal space co		coordination	synthesis conditions	Ref	
compounds	system	group	umension	modes of H ₂ L	synthesis conditions	Ker
[Col].	monoclinic	P2(1)/n	3D	А	9 ml H ₂ O, pH = 6.0-	21
[001]0	monocimic	12(1)//	7.0, 2	7.0, 130 ℃, 72 h		
[Ni2L2(H2O)3],	monoclinic	C2/c	3D	3D C. D	2 ml DMF + 6 ml H_2O	21
				-,	100 °C, 72 h	
[CoL(bimx) _{1/2}] _n	monoclinic	C2/c	3D	В	2 ml DMF + 6 ml H ₂ O	21
					100 ℃, 72 h	
[NiL(bimx) _{1/2}] _n	monoclinic	C2/c	3D	В	2 ml DMF+6ml H ₂ O	21
					100 ℃, 72 h	
[MnL(bimx) _{1/2}] _n	monoclinic	C2/c	3D	В	3 ml DMF+6 ml H ₂ O	21
					100 °C, 72 h	
$\{[CoL_2(bimb)(H_2O)_2]_3 \cdot 2H_2O\}_n$	triclinic	P-1	2D	D	2 mi DIVIF+6 mi H ₂ O	21
					100 C, 72 h	
[Mn ₂ L ₂ (H ₂ O) ₂ ·2DMF·	monoclinic	D21/n	30	D	$rH = 0.70 + 100^{\circ}C - 72$	22
2H ₂ O] _n	monocimic	, 21,11	50	b	h	22
		R-3			1.5 ml DMA + 0.5 ml +	
Cu(L2) ·xsolv	trigonal	3D (148)	3D	А	50 μl H₂O 85 ℃, 12 h	23
	orthorhombic	Pbcn	3D A		1.5 ml DMA + 0.5 ml	
Cu(L2) ·xsolv		(60)		A	EtOH 85 ℃, 12 h	23
			two-fold			
[DyAg(L)₂(H₂O)]n·2n(H₂O)	triclinic	P-1	interpenetrated	В, С	8 mL H ₂ O + 5 mL EtOH,	24
			3D framework	ramework	160 C,72 h	
{[Ln ₂ (L) ₃ (H ₂ O) ₄]·10H ₂ O}n	orthorhombic	Pnma	3D	A, D	2 ml DMF + 8 ml H ₂ O	25
			3D pillared -		160 C, 72 h	
[Pb ₂ L ₂] _n	triclinic	<i>P</i> -1	layered	Β, Ε	5 m DMF+10 m H₂O 160 ℃,60 h	26
	triclinic	D 1	20	F	$3 \text{ ml H}_2\text{O} + 3 \text{ ml DMF}$	
	trichinic	P-1	2D	Г	90 ℃,72 h	
[CdL(H ₂ O)(4,4'-bipy) _{0.5}]·H ₂ O	triclinic	<i>P</i> -1	two-fold interpenetrated	D	5 ml H₂O +1 ml DMF	
			2D layer		95 C,72 n	
[CdL(H ₂ O) ₂]·0.5H ₂ bdc	triclinic	P-1	2D	D	100 ℃,72 h	

Table S3 Comparisons between 1-3 and some reported coordination polymers.

_

CPs	K _{sv} [M ⁻¹]	Reference
Cd(II)-MOF	3.59 × 10 ⁴	[21]
Pb ₃ O ₂ L	7.80×10^3	[23a]
PCN-604	8.53 × 10 ³	[23b]
BUT-14	2.17 × 10 ⁴	[23c]
BUT-15	1.66 × 10 ⁴	[23c]
[ZnL(H ₂ O)]·(Me ₂ NH ₂)·DMF	2.06×10^4	[23d]
Tb-MOF	3.714 × 10 ⁴	[23e]
1	3.529 × 10 ⁴	This work
2	3.619×10^4	This work
3	3.260×10^4	This work

Table S4 The comparison of K_{sv} between **1-3** and other reported probes for the detection of Fe³⁺.