S1

Electronic Supplementary Information

Realizing high thermoelectric performance in Te nanocomposite through Sb₂Te₃ incorporating

Heng Quan Yang,^a Yong Jin Chen,^b Xiao Yang Wang,^c Lei Miao,^{*c} Xiao Yan Li,^d Xiao Dong Han,^b Xu Lu,^a Guo Yu Wang,^{ef*} Xiao Yuan Zhou^{*a}

^{a.} College of Physics, Chongqing University, Chongqing 401331, P. R. China

^{b.} Beijing Key Laboratory and Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, P. R. China

^{c.} School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, P. R. China

^{d.} Department of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, P. R. China

^{e.} Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China

^{f.} University of Chinese Academy of Sciences, Beijing 100049, P. R. China *Corresponding Authors

*E-mail: miaolei@guet.edu.cn (L. Miao); guoyuw@cigit.ac.cn (G.-Y. Wang); xiaoyuan2013@cqu.edu.cn (X.-Y. Zhou)

Fig. S1 The flow chart of experimental procedures.

Table S1 Density d, Sb₂Te₃ Mole Fraction m, Carrier Concentration p, andCarrier Mobility μ of Samples Tx

Sample <i>Tx</i>	d	т	р	μ
	(g cm ⁻³)	(mol%)	(cm ⁻³)	$(cm^2 V^{-1} s^{-1})$
<i>T0</i> (Te)	6.16	0	2.2×10^{17}	404
<i>T1</i>	6.13	0.8	1.7×10^{18}	150
Τ3	6.16	2.6	1.8×10^{19}	30
T3A	5.92	2.6	1.6×10^{19}	138
Τ5	6.20	4.5	$2.0 imes 10^{19}$	62
<i>T30</i>	6.25	50.0	$4.0 imes 10^{19}$	101
<i>T60</i>	6.30	100.0	$8.5 imes 10^{19}$	83
(Sb ₂ Te ₃)				

1. Chemical composition determination.

Fig. S2 The magnified XRD patterns of samples Tx in the 2-theta range of $27-29^{\circ}$.

Fig. S3 HAADF-STEM image (left) and EDX elements mapping of the sintered sample *T3*.

Element	series	orm. wt.%	orm. at.%	3 Sigma
Antimony	L-series	4.86	5.08	1.61

Table S2. Chemical Composition of Sintered Sample T3

2. Anisotropy of thermoelectric properties.

Fig. S4 Thermoelectric properties of sample T60 (Sb₂Te₃) along different directions: perpendicular and parallel to the pressure direction.

S5

Fig. S5 Temperature-dependent thermal diffusivity of sample *T0*.

3. Repeatability of thermoelectric properties.

Fig. S6 Temperature-dependent electrical properties of two cuboids cut from bulk sample *T0*.

S7

Fig. S7 The stability of thermoelectric properties for sample *T3*.

S7