Electronic Supplementary Information

Halo-phenyl based linear dipodal receptors for entrapment of anions/anionic associations within neutral non-cooperative self-assemblies

Utsab Manna and Gopal Das *

Department of Chemistry, Indian Institute of Technology Guwahati,

Assam-781039, India

E-mail: gdas@iitg.ernet.in

Characterization of free receptors L_1 and L_2 :

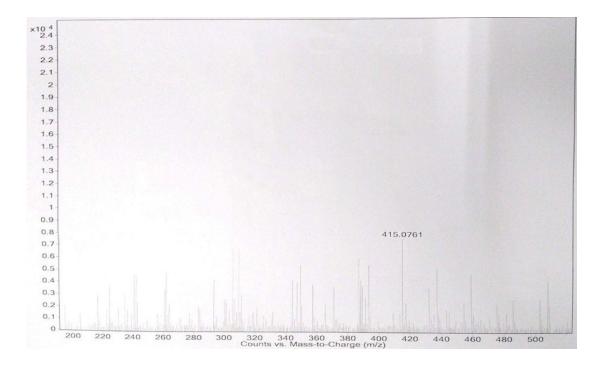
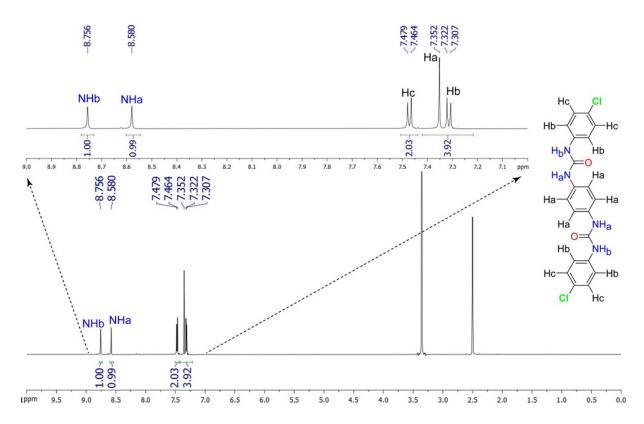



Figure S1: ESI-Mass spectrum of *para*-chlorophenyl functionalized *para*-phenylenediamine based bis-urea receptor L_1 .

Figure S2: Integrated ¹H-NMR spectrum (full as well as expanded) and interpretation of all hydrogen atoms of free dipodal bis-urea *para*-chloro isomer L₁ in DMSO-d₆ at 25°C.

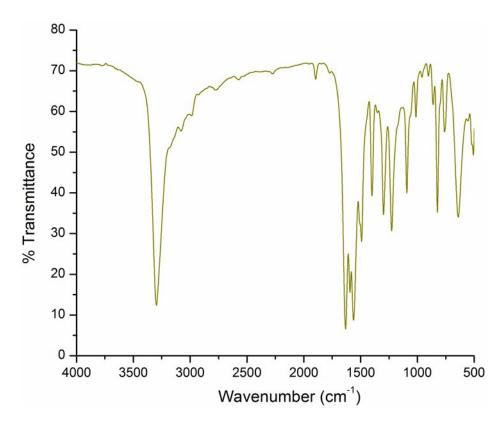


Figure S3: FT-IR spectrum of L_1 recorded in KBr pellet.

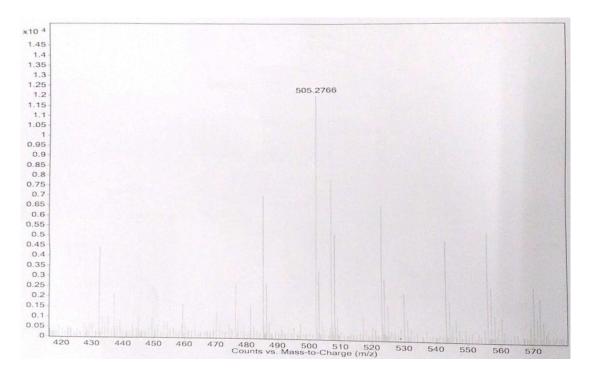
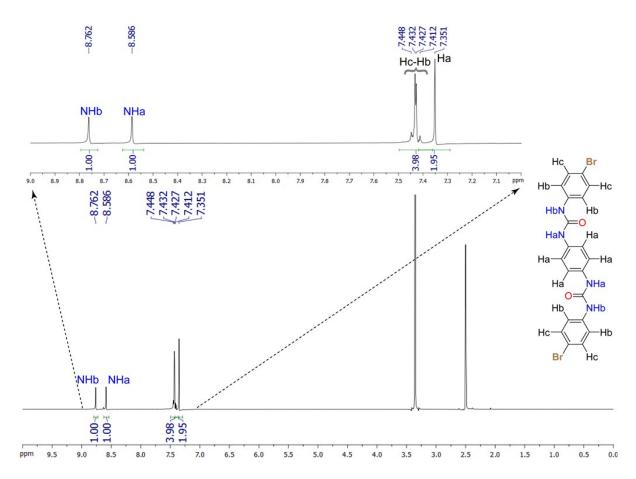



Figure S4: ESI-Mass spectrum of para-bromophenyl functionalized para-phenylenediamine based bis-urea receptor L_2 .

Figure S5: Integrated 1 H-NMR spectrum (full as well as expanded) and interpretation of all hydrogen atoms of free dipodal bis-urea *para*-bromoisomer L_2 in DMSO-d₆ at 25°C.

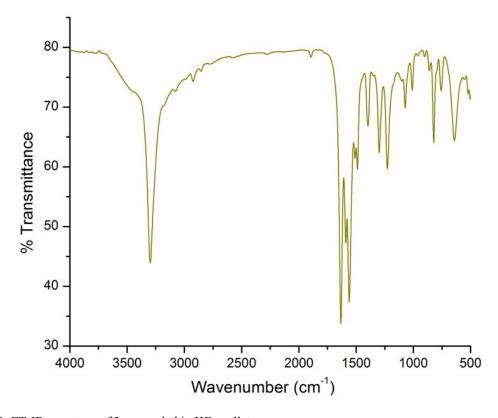


Figure S6: FT-IR spectrum of L2 recorded in KBr pellet.

Characterization of neutral anion complexes of receptors:

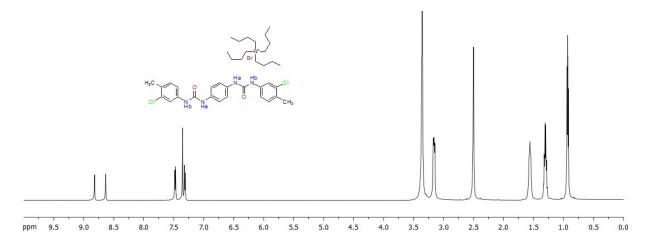


Figure S7: ¹H NMR full and expanded spectrum of bromide complex 1a of L_1 as recorded in DMSO- d_6 at 298 K.

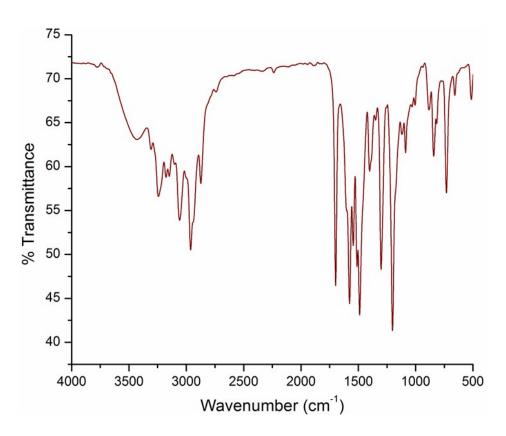
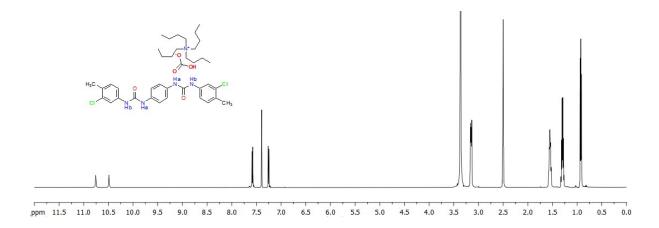



Figure S8: FT-IR spectrum of complex 1a of L_1 recorded in KBr pellet.

Figure S9: ¹H NMR full and expanded spectrum of hydroxide induced hydrogenearbonate dimer entrapped complex **1b** of L_1 as recorded in DMSO- d_6 at 298 K.

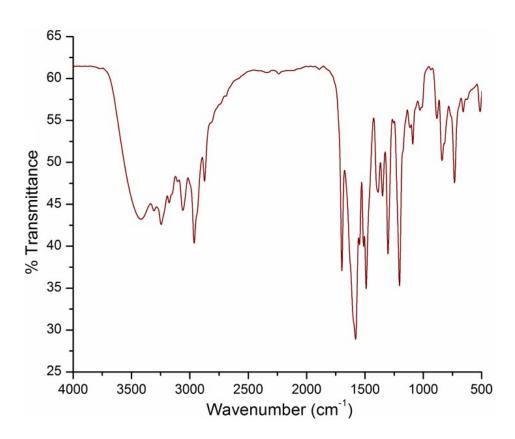


Figure S10: FT-IR spectrum of complex 1b of L_1 recorded in KBr pellet.

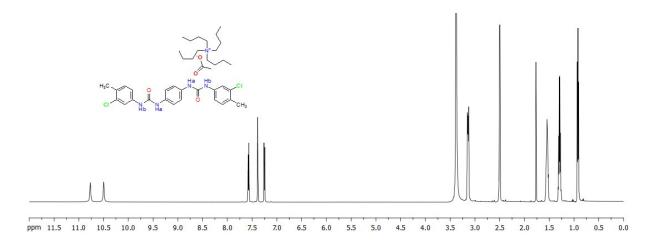


Figure S11: ¹H NMR full and expanded spectrum of acetate entrapped complex 1c of L_1 as recorded in DMSO- d_6 at 298 K.

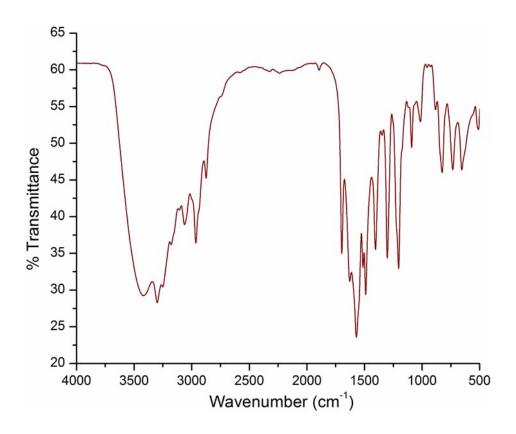


Figure S12: FT-IR spectrum of complex 1c of L_1 recorded in KBr pellet.

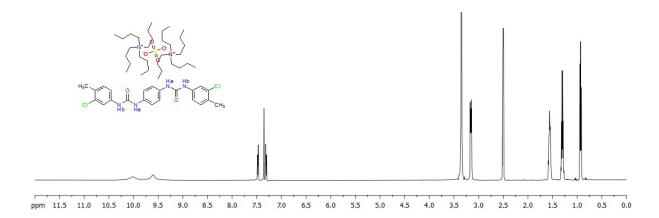


Figure S13: ¹H NMR full and expanded spectrum of divalent sulphate complex 1d of L_1 as recorded in DMSO- d_6 at 298 K.

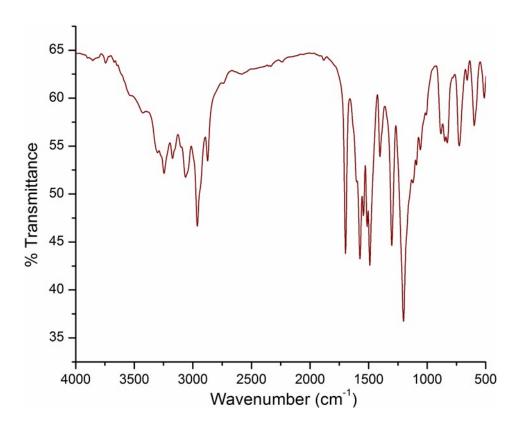
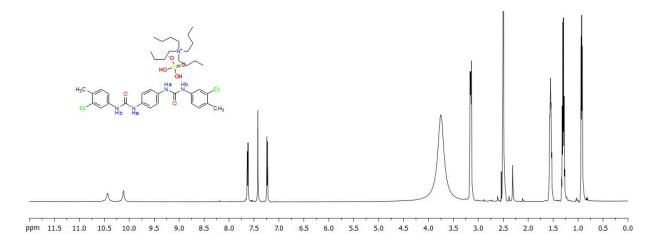



Figure S14: FT-IR spectrum of complex 1d of L_1 recorded in KBr pellet.

Figure S15: ¹H NMR full and expanded spectrum of dihydrogenphosphate polymer trapped complex 1e of L_1 as recorded in DMSO- d_6 at 298 K.

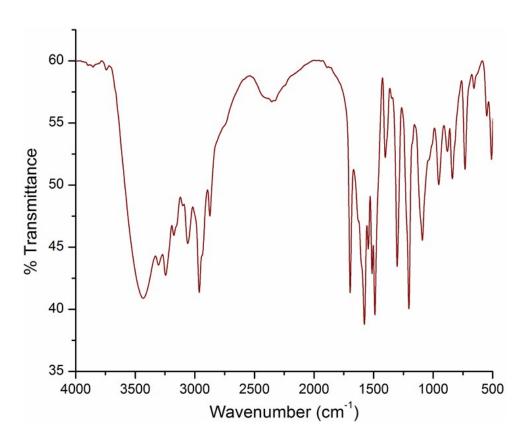


Figure S16: FT-IR spectrum of complex 1e of L_1 recorded in KBr pellet.

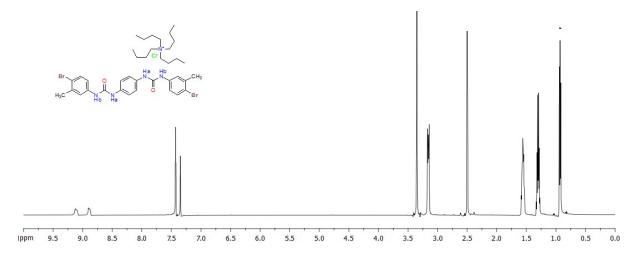
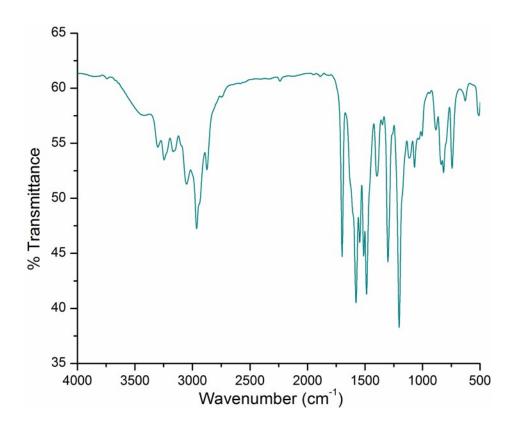
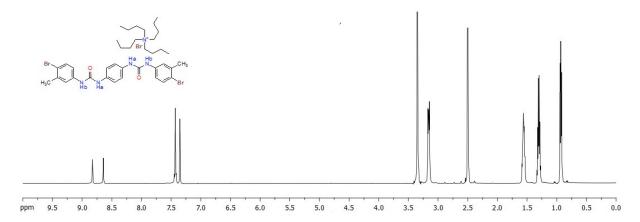




Figure S17: ¹H NMR full and expanded spectrum of chloride complex 2a of L_2 as recorded in DMSO- d_6 at 298 K.

 $Figure \ S18: \ \mathsf{FT}\text{-}IR \ \mathsf{spectrum} \ \mathsf{hydrated}\text{-}\mathsf{acetate} \ \mathsf{complex} \ 2a \ \mathsf{of} \ L_2 \ \mathsf{recorded} \ \mathsf{in} \ \mathsf{KBr} \ \mathsf{pellet}.$

Figure S19: ¹H NMR full and expanded spectrum of bromide entrapped complex **2b of L₂** as recorded in DMSO- d_6 at 298 K.

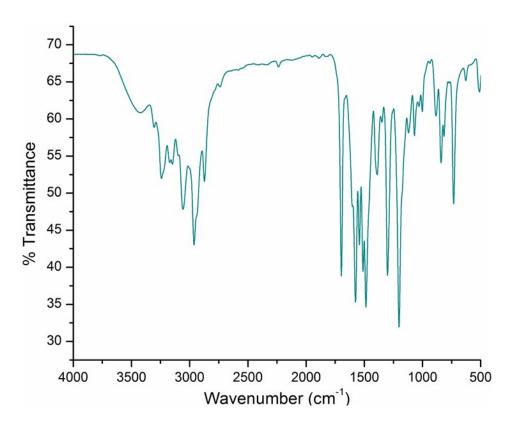


Figure S20: FT-IR spectrum of complex 2b of L_2 recorded in KBr pellet.

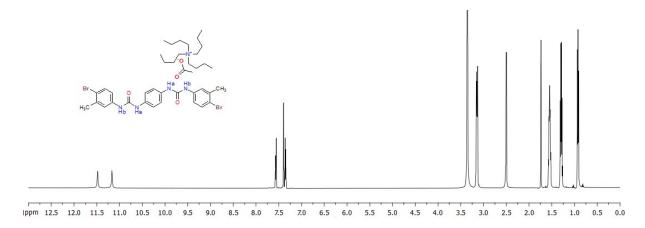


Figure S21: ¹H NMR full and expanded spectrum of acetate entrapped complex 2c of L_2 as recorded in DMSO- d_6 at 298 K.

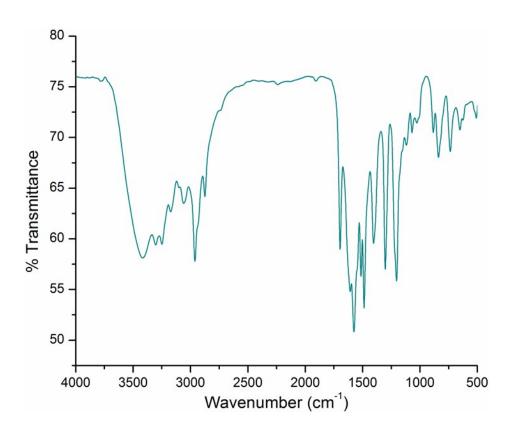
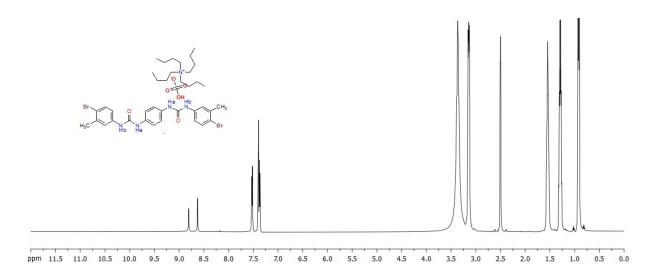



Figure S22: FT-IR spectrum of complex 2c of L_2 recorded in KBr pellet.

Figure S23: ¹H NMR full and expanded spectrum of hydrogensulphate dimer entrapped complex **2d** of L_2 as recorded in DMSO- d_6 at 298 K.

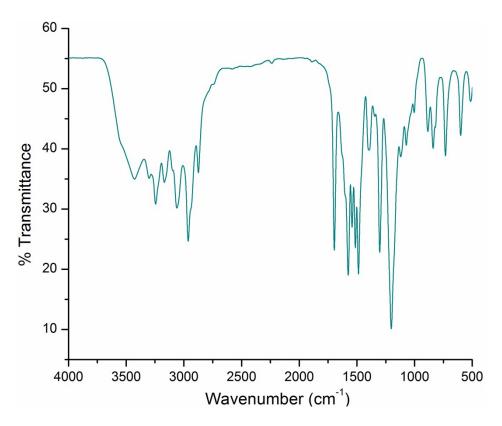


Figure S24: FT-IR spectrum of complex 2d of L_2 recorded in KBr pellet.

 $\textbf{Table S1.} \ \text{Hydrogen bonding distances (Å) and Bond angles (°) in the neutral anion-receptor complexes:}$

, ,	C	` /	U ()			1
Ligand/Complex	D-H···A	<i>d</i> (D…H)/Å	d(H···A)/Å	d(D…A)/Å	<d-h···a td="" °<=""><td>Symmetry codes</td></d-h···a>	Symmetry codes
1 a	N1-H1N···Br1	0.86	2.52	3.351(5)	162	1/2-x,-1/2+y,1/2-z
	N2-H2N···Br1	0.86	2.50	3.332(4)	163	1/2-x,-1/2+y,1/2-z
1b	N1-H1N···O2	0.86	1.93	2.76(13)	164	x,y,z
	N2-H2N···O3	0.86	2.00	2.83(13)	165	x,y,z
	O4-H4O···O3	0.82	1.83	2.64(13)	169	1-x,1-y,-z
1 c	N1-H1N···O3	0.86	2.00	2.834(4)	163	x,y,z
	N2-H2N···O4	0.86	1.93	2.776(4)	166	x,y,z
	N3-H3N···O5	0.86	1.97	2.785(4)	158	1-x,-1/2+y,1/2-z
	N4-H4N···O6	0.86	1.96	2.809(4)	167	1-x,-1/2+y,1/2-z
1d	N1-H1N···O4	0.86	2.00	2.833(7)	162	x,y,z
	N1-H1N···O6	0.86	2.06	2.854(7)	154	х,у,z
	N2-H2N···O4	0.86	2.58	3.248(6)	135	x,y,z
	N2-H2N···O5	0.86	2.17	2.927(6)	147	х,у,z
	N2-H2N···O3	0.86	1.95	2.765(5)	159	1-x,-y,1-z
	N3-H3N···O6	0.86	2.54	3.299(6)	148	1-x,1/2+y,1/2-z
	N3-H3N···O3	0.86	2.00	2.798(5)	154	x,1/2-y,-1/2+z
	N3-H3N···O4	0.86	2.29	3.051(6)	148	x,1/2-y,-1/2+z
	N3-H3N···O5	0.86	2.51	3.233(6)	142	x,1/2-y,-1/2+z
	N4-H4N···O6	0.86	2.03	2.828(6)	153	1-x,1/2+y,1/2-z
	N4-H4N···O5	0.86	2.00	2.835(6)	163	x,1/2-y,-1/2+z
	114 11411 03	0.00	2.00	2.033(0)	103	x,1/2 y, 1/2·2
1 e	N1-H1N···O5	0.86	2.13	2.923(4)	153	x,y,z
	N2-H2N···O4	0.86	2.01	2.833(4)	161	x,y,z x,y,z
	02-H2O···05	0.82	1.75	2.549(4)	164	1-x,-y,1-z
	03-H30···04	0.82	1.76	2.558(4)	166	-x,-y,1-z
	03-1130 04	0.02	1.70	2.330(4)	100	-A,-y,1-L
2 a	N1-H1N···Cl1	0.86	2.35	3.181(6)	161	3/2-x,1/2+y,1/2-z
	N2-H2N···Cl1	0.86	2.35	3.181(6)	162	3/2-x,1/2+y,1/2-z
	102-11210С11	0.80	2.33	3.101(0)	102	3/2-x,1/2+y,1/2-2
2b	N1-H1N···Br2	0.86	2.52	3.352(6)	163	1/2-x,-1/2+y,1/2-z
20	N2-H2N···Br2	0.86	2.49	3.332(6)	163	1/2-x,-1/2+y,1/2-z
	NZ-11ZIN····DIZ	0.80	2.43	3.319(0)	103	1/2-x,-1/2+y,1/2-2
2 c	N1-H1N···O3	0.86	1.97	2.809(7)	164	V 1/ 7
zc	N2-H2N··· O4	0.86	1.92	2.766(7)	166	X,y,z
	N3-H3N··· 06	0.86	1.96	2.778(7)	158	x,y,z 1+x,y,z
	N4-H4N··· O5	0.86	1.97	2.812(7)	166	1+x,y,z
						·
2d	N1-H1N···O10	0.86	2.04	2.902(7)	175	x,y,z
	N2-H2N··· O11	0.86	2.15	2.992(7)	166	x,y,z
	112 11211 011	0.00	_	` '		

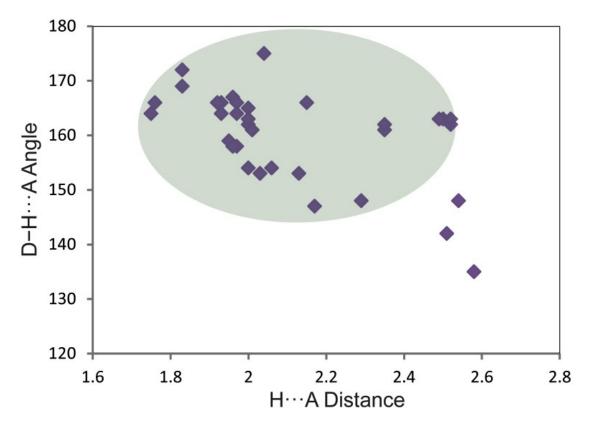


Figure S25. The scatter plot of D-H···A angles vs. H···A distances of the hydrogen bonds in neutral halide and oxyanion complexes 1a-1e, 2a-2d of receptors L_1 and L_2 and encircled area in the plot representing most of the interactions are present in strong hydrogen-bonding regions.