3-Cyanopyridine as bridging and terminal ligand in coordination polymers

Miriam Heine, Lothar Fink, Martin U. Schmidt*

Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Str. 7, 60438
Frankfurt am Main, Germany. E-Mail: m.schmidt@chemie.uni-frankfurt.de; Fax: +49 69798 29235; Tel: +49 6979829123

Figures

Figure S1 DTA/TG curves of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{4}\right](3 a)$. 3
Figure S2 DTA/TG curves of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{4}\right](4 a) . \quad 3$
Figure S3 DTA/TG curves of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{4}\right](5 a)$. 4
Figure S4 DSC curve of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(\mathbf{4 b}-\boldsymbol{\alpha})$. 4

Figure S5 IR spectrum of $\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{4}\right]$ (1a). 5
Figure S6 IR spectrum of $\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(1 b)$. 5
Figure $57 \quad \mathrm{IR}$ spectrum of $\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{n}(1 \mathbf{c})$. 6

Figure S8 IR spectrum of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{4}\right](2 a)$. 6
Figure S9 IR spectrum of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{\mathrm{n}}(\mathbf{2 a})$. 7
Figure S10 IR spectrum of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}(\mathbf{2 a})$. 7

Figure $\mathrm{S} 11 \quad \mathrm{IR}$ spectrum of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{4}\right](3 \mathbf{a})$. 8
Figure $\mathrm{S} 12 \quad \mathrm{IR}$ spectrum of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}$ - mixture of $\boldsymbol{\alpha} \mathbf{- 3 b}$ and $\boldsymbol{\beta}-\mathbf{3 b} \quad 8$
Figure $\mathrm{S} 13 \quad \mathrm{IR}$ spectrum of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}(3 \mathbf{c})$. 9

Figure $\mathrm{S} 14 \quad \mathrm{IR}$ spectrum of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{4}\right](4 \mathbf{a}) . \quad 9$
Figure S15 IR spectrum of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}$ - mixture of $\boldsymbol{\alpha}-\mathbf{4 b}$ and $\boldsymbol{\beta}-\mathbf{4 b} \quad 10$
Figure $\mathrm{S} 16 \quad \mathrm{IR}$ spectrum of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}(\mathbf{4 c})$. 10

Figure S17 Rietveld plot of $\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{4}\right](\mathbf{1 a}) . \quad 11$
Figure $\mathrm{S} 18 \quad$ Rietveld plot of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{4}\right](\mathbf{2 a}) . \quad 11$
$\begin{array}{lll}\text { Figure } \mathrm{S} 19 & \text { Rietveld plot of }\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{4}\right](3 a) . & 12\end{array}$

Figure S20
Rietveld plot of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{4}\right]$ (4a).
Figure S21
Rietveld plot of $\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{\mathrm{n}}$ (1b).13

Figure S22
Rietveld plot of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(2 b)$. 13

Figure S23
Rietveld plot of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(\mathbf{3 b})$ - mixture of $\boldsymbol{\alpha}-\mathbf{3 b} / \boldsymbol{\beta}-\mathbf{3 b} .14$
Figure S24
Figure S25
Figure S26
Figure S27
Figure S28
Figure S29
Figure S30

Figure S31

Figure S32

Figure S33
Rietveld plot of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(4 \mathbf{b})$ - mixture of $\boldsymbol{\alpha}-\mathbf{4} \mathbf{b} / \boldsymbol{\beta}-4 \mathbf{b}$.
Rietveld plot of $\alpha-\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(\mathbf{\alpha}-4 \mathbf{b})$. 15
Rietveld plot of $\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}(\mathbf{1 c})$. 15
Rietveld plot of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}(\mathbf{2 c})$. 16
Rietveld plot of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}(\mathbf{3 c})$. 16
Rietveld plot of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{n}(4 \mathrm{c})$. 17
Low-temperature-XRPD series of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{\mathrm{n}}(4 \mathbf{b})$: 17
$-40^{\circ} \mathrm{C} \rightarrow-60^{\circ} \mathrm{C} \rightarrow-80^{\circ} \mathrm{C} \rightarrow-60^{\circ} \mathrm{C} \rightarrow-40^{\circ} \mathrm{C}$
Low-temperature-XRPD series of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{\mathrm{n}}(\mathbf{4 b})$: 18 $-45^{\circ} \mathrm{C} \rightarrow-75^{\circ} \mathrm{C}$ in steps of $-5^{\circ} \mathrm{C}$, showing the phase transition in detail

High-temperature-XRPD series of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(4 \mathbf{b})$: 18
$50^{\circ} \mathrm{C} \rightarrow 100^{\circ} \mathrm{C} \rightarrow 150^{\circ} \mathrm{C} \rightarrow 190^{\circ} \mathrm{C}$: no further phase transition
Low-temperature-XRPD series of $\alpha-\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(\boldsymbol{\alpha}-3 \mathbf{b})$: 19
$20^{\circ} \mathrm{C} \rightarrow-50^{\circ} \mathrm{C} \rightarrow-100^{\circ} \mathrm{C} \rightarrow-50^{\circ} \mathrm{C} \rightarrow 20^{\circ} \mathrm{C}$: no further phase transition

Tables

Table S1
Results of DTA/TG measurements.19

Table S2
Crystallographic data of $\left[\mathrm{M}^{\mathrm{H}} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{4}\right]$.20

Table S3
Crystallographic data of $\left[\mathrm{M}^{\prime \prime} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}$.21

Table S4 Crystallographic data of $\left[\mathrm{M}^{\prime \prime} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{1}\right]_{n}$. 22

Experimental Details

Text S1 Details on synthesis of $\left[\mathrm{M}^{\mathrm{H}} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{4}\right]$. 23
Text S2 Details on preparation of $\left[\mathrm{M}^{\prime \prime} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{2}\right]_{\mathrm{n}}$. 24
Text S3 Details on preparation of $\left[\mathrm{M}^{\prime \prime} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}$. 25
$\begin{array}{lll}\text { Text S4 Details on structure solution. } & 26\end{array}$

Figure S1. DTA/TG curves of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{4}\right]$ (2a). Heating rate: $5 \mathrm{~K} / \mathrm{min}$, Ar atmosphere, $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucible. The shoulder marked by a * points to a fourth decomposition product $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{1-x}\right]_{n}$, which could not be isolated in the Fe series, but would explain foreign reflections in the XRPD pattern of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}$.

Figure S2. DTA/TG curves of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{4}\right]$ (3a). Heating rate: $5 \mathrm{~K} / \mathrm{min}$, Ar atmosphere, $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucible. The shoulder marked by a * points to a fourth decomposition product [$\left.\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{1-x}\right]_{n}$, which could not be isolated in the Co series, but would explain foreign reflections in the XRPD pattern of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\text {n }}$.

Figure S3. DTA/TG curves of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{4}\right](4 a)$. Heating rate: $5 \mathrm{~K} / \mathrm{min}$, Ar atmosphere, $\mathrm{Al}_{2} \mathrm{O}_{3}$ crucible.

Figure S4. DSC-curve of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(\beta-4 b)$. (1) cooling from room temperature to $-150^{\circ} \mathrm{C}$, then (2) heating to room temperature. Instrumental artefacts are marked by stars.

Figure S5. IR spectrum of $\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{4}\right]$ (1a)

Figure S6. IR spectrum of $\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{\mathrm{n}}(1 \mathbf{b})$

Figure $\mathbf{S 7}$. IR spectrum of $\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}(1 \mathrm{c})$

Figure S8. IR spectrum of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{4}\right]$ (2a)

Figure S9. IR spectrum of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{\mathrm{n}}(\mathbf{2 b})$

Figure $\mathbf{S 1 0}$. IR spectrum of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}(\mathbf{2 c})$

Figure S11. IR spectrum of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{4}\right]$ (3a)

Figure S12. IR spectrum of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}$: mixture of $\boldsymbol{\alpha}-\mathbf{3 b}$ and $\boldsymbol{\beta} \mathbf{- 3 \mathbf { b }}$
Revised Supplementary Material

Figure S13. IR spectrum of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}(3 \mathbf{c})$

Figure $\mathbf{S 1 4}$. IR spectrum of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{4}\right](4 a)$

Figure S15. IR spectrum of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{\mathrm{n}}$: mixture of $\boldsymbol{\alpha} \mathbf{- 4} \mathbf{b}$ and $\boldsymbol{\beta} \mathbf{- 4 \mathbf { b }}$

Figure S16. IR spectrum of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})\right]_{\mathrm{n}}(\mathbf{4 c})$

Figure S17. Rietveld plot of 1a. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks). Change of the scale with corresponding factor is indicated in the diagram.

Figure S18. Rietveld plot of 2a. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks). Change of the scale with corresponding factor is indicated in the diagram.

Figure S19. Rietveld plot of 3a. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks). Change of the scale with corresponding factor is indicated in the diagram.

Figure S20. Rietveld plot of 4a. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks). Change of the scale with corresponding factor is indicated in the diagram.

Figure S21. Rietveld plot of 1b. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks). Change of the scale with corresponding factor is indicated in the diagram.

Figure S22. Rietveld plot of 2b. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks). Change of the scale with corresponding factor is indicated in the diagram.

Figure S23. Rietveld plot of $\mathbf{3 b}$. The crystal structures of $\alpha-3 b$ and $\beta-3 b$ were refined from a phase mixture. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks for $\boldsymbol{\alpha} \mathbf{- 3 b}$, brown tick marks for $\beta-3 b)$. Change of the scale with corresponding factor is indicated in the diagram.

Figure S24. Rietveld plot of 4b. The crystal structures of $\beta \mathbf{\beta} \mathbf{4 b}$ was refined from a phase mixture of $\alpha-$ $\mathbf{4 b}$ and $\beta-\mathbf{4 b}$. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks for $\boldsymbol{\alpha} \mathbf{- 4 b}$, violet tick marks for $\beta-4 b)$. Change of the scale with corresponding factor is indicated in the diagram. Excluded region is indicated.

Figure S25. Rietveld plot of $\mathbf{\alpha - 4 b}$. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks). Change of the scale with corresponding factor is indicated in the diagram.

Figure S26. Rietveld plot of 1c. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks). Change of the scale with corresponding factor is indicated in the diagram.

Figure S27. Rietveld plot of 2c. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks). Change of the scale with corresponding factor is indicated in the diagram. Reflections of a foreign phase are excluded.

Figure S28. Rietveld plot of 3c. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks). Change of the scale with corresponding factor is indicated in the diagram. Reflections of a foreign phase are excluded.

Figure S29. Rietveld plot of 4c. Observed powder diagram (black points), simulated powder diagram (red solid line), difference profile (blue solid line) and reflection positions (green tick marks). Change of the scale with corresponding factor is indicated in the diagram. An appearing reflection of NiCl_{2} was excluded.

Figure S30. Low-temperature-XRPD series of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(4 \mathbf{b})$: the phase transition of $\boldsymbol{\beta}-\mathbf{4 b}$ into $\boldsymbol{\alpha}-\mathbf{4 b}$ is reversible.

Figure S31. Low-temperature-XRPD series of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(4 \mathbf{b})$ showing the phase transition in detail. At $-75^{\circ} \mathrm{C}$ the phase transition is completed.

Figure S32. High-temperature-XRPD series of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(\mathbf{4 b})$: no further phase transition up to $190^{\circ} \mathrm{C}$.

Figure S33. Low-temperature-XRPD series of $\alpha-\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{\mathrm{n}}(\boldsymbol{\alpha}-\mathbf{4 b})$: no further phase transition down to $-100^{\circ} \mathrm{C}$.

Table S1. Results of DTA/TG measurements of $\left[\mathrm{M}^{\prime \prime} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{4}\right]$ ($\left.\mathrm{M}^{\mathrm{II}}=\mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}\right)$. T: DTA peak temperatures, m_{0} : weight of starting compound, $\Delta m_{\text {exp }}$: relative experimental weight loss, experimental $\Delta m_{\text {exp }} / m_{0}$, calculated $\Delta m_{\text {cal }} / m_{0}$.

Compound	T/ ${ }^{\circ} \mathrm{C}$	$\mathrm{m}_{0} / \mathrm{mg}$	$\Delta m_{\text {exp }} / \mathrm{mg}$	$\Delta m_{\text {exp }} / \mathrm{m}_{0} / \%$	$\Delta m_{\text {cal }} / m_{0} / \%$
$\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{4}\right]$		20.72	0	0	0
$\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{\mathrm{n}}$	156.9		6.54	31.54	32.99
$\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}$	244.1		3.32	26.97	24.61
MnBr_{2}	306.4		3.30	30.43	32.66
$\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{4}\right]$		21.50	0	0	0
$\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}$	197.4		6.83	31.76	32.94
$\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}$	245.8		3.35	22.82	24.56
FeBr_{2}	318		2.79	24.56	32.55
[$\left.\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{4}\right]$		20.72	0	0	0
$\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}$	198.8		6.61	31.90	32.78
$\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}$	250.3		3.25	23.05	24.37
CoBr 2	313.63		2.37	21.90	32.24
[$\left.\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{4}\right]$		26.43	0	0	0
$\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}$	217.8		8.32	31.52	32.77
$\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}$	281.2		4.04	22.33	24.37
NiBr_{2}	346.8		3.92	27.88	32.22

Table S2. Crystallographic data of $\left[\mathrm{M}^{\mathrm{II}} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{4}\right]$.

	1a	2a	3a	4a
Compound	[$\left.\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{4}\right]$	[$\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{4}$]	[$\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{4}$]	[$\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{4}$]
CSD number	1845140	1845149	1845152	1845162
Formula	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{MnN}_{8}$	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{FeN}_{8}$	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{CoN}_{8}$	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{NiN}_{8}$
Crystal system	Tetragonal	Tetragonal	Tetragonal	Tetragonal
Space group (No.)	P 4nc (104)	P 4nc (104)	P 4nc (104)	P 4nc (104)
MW/g $\cdot \mathrm{mol}^{-1}$	631.19	632.10	635.20	634.94
a IÅ	11.2178(5)	11.1484(2)	11.0587(4)	10.9722(9)
	10.3309(6)	10.3205(2)	10.4149(5)	10.4600(3)
\boldsymbol{V} / \AA^{3}	1300.0(3)	1282.7(1)	1273.7(1)	1259.3(2)
Z, Z'	2, 1/4	2, 1/4	2, 1/4	2, 1/4
Site symmetry of M^{11}	4	4	4	4
$D_{\text {calc }} / \mathbf{M g} \cdot \mathrm{m}^{-3}$	1.612	1.637	1.656	1.674
T /K	298	298	298	298
Radiation type	$\mathrm{Cu} K \alpha_{1}$	$\mathrm{Cu} K \alpha_{1}$	$\mathrm{Cu} K \alpha_{1}$	$\mathrm{Cu} K \alpha_{1}$
Wavelength IÅ	1.54056	1.54056	1.54056	1.54056
$2 \theta_{\text {max }} I^{\circ}$	100	95	100	100
$R_{p} / \%$	1.587	1.821	1.039	4.179
$\mathrm{R}_{\text {wp }} \mathrm{I} \%$	2.038	2.315	1.335	5.366
$\mathrm{R}_{\text {exp }} / \%$	1.959	2.279	1.150	2.891
GOF	1.042	1.015	1.162	1.856
$\mathrm{R}^{\prime} / \%^{\text {a }}$	11.095	16.854	18.098	8.492
$R_{\text {wp }}{ }^{\prime} / \%^{\text {a }}$	8.292	10.980	12.177	9.616
$\boldsymbol{R}_{\text {exp }}{ }^{\prime} / \%{ }^{\text {a }}$	7.971	10.812	10.484	5.181

(a) $R^{\prime}, R_{w p}$ ' and R_{p} ' values are background corrected according to the reference [41].

Table S3. Crystallographic data of $\left[\mathrm{M}^{\prime \prime} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}$.

	1b	2b	$\alpha-3 \mathrm{~b}$	$\boldsymbol{\beta - 3 b}$	$\alpha-4 b$	$\beta-4 b$
Compound	$\begin{aligned} & {\left[\mathrm{MnBr}_{2}(3-\right.} \\ & \left.\mathrm{CNpy})_{2}\right]_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{FeBr}_{2}(3-\right.} \\ & \left.\mathrm{CNpy})_{2}\right]_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{CoBr}_{2}(3-\right.} \\ & \left.\mathrm{CNpy})_{2}\right]_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{CoBr}_{2}(3-\right.} \\ & \left.\mathrm{CNpy})_{2}\right]_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{NiBr}_{2}(3-\right.} \\ & \left.\mathrm{CNpy})_{2}\right]_{\mathrm{n}} \end{aligned}$	$\begin{aligned} & {\left[\mathrm{NiBr}_{2}(3-\right.} \\ & \left.\mathrm{CNpy})_{2}\right]_{\mathrm{n}} \end{aligned}$
CSD number	1845141	1845150	1845157	1845160	1845163	1845164
Formula	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \\ & \mathrm{MnN}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \\ & \mathrm{FeN}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \\ & \mathrm{CoN}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \\ & \mathrm{CoN}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \\ & \mathrm{NiN}_{4} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \\ & \mathrm{NiN}_{4} \end{aligned}$
MW/g $\cdot \mathrm{mol}^{-1}$	422,96	423,87	426,95	426,95	426,71	426,71
Crystal system	Orthorhomb ic	Orthorhom bic	Orthorhom bic	Triclinic	Monoclinic	Triclinic
Space group (No.)	Pnnm (58)	Pnnm (58)	Pnnm (58)	$P^{\overline{1}}(2)$	C c (9)	$P^{\overline{1}}(2)$
a IA	27.304(6)	27.128(5)	27.019(1)	3.727(5)	3.709(1)	3.727(4)
b IA	7.221(9)	7.172(2)	7.124(2)	13.629(6)	26.801(4)	13.574(9)
c / A	3.829(7)	3.788(1)	3.759(7)	13.868(6)	13.706(8)	13.761(6)
$\alpha /^{\circ}$	90	90	90	87.37(7)	90	86.86(2)
B 1°	90	90	90	82.34(4)	97.67(8)	82.40(1)
$Y I^{\circ}$	90	90	90	82.40(5)	90	82.12(1)
V / \AA^{3}	755.1(8)	737.0(2)	723.7(1)	697.2(2)	1350.5(8)	683.1(5)
Z, \mathbf{Z}^{\prime}	2, 1/4	2, 1/4	2, 1/4	2, 1	4, 1	2, 1
Site symmetry of M^{11}	$2 / m$	2/m	2/m	$\overline{1}, \overline{1}$	1	$\overline{1}, \overline{1}$
$D_{\text {calc }} / \mathrm{Mg} \cdot \mathrm{m}^{-3}$	1.860	1.910	1.959	2.034	2.099	2.075
T /K	298	298	298	298	125	298
Radiation type	$\mathrm{Cu} K \alpha_{1}$					
Wavelength IA	1.54056	1.54056	1.54056	1.54056	1.54056	1.54056
$2 \theta_{\text {max }} I^{\circ}$	100	95	$85{ }^{\text {a }}$	$85{ }^{\text {a }}$	90	70
$\mathrm{R}_{\mathrm{p}} \mathrm{I} \%$	2.095	1.315	$1.388{ }^{\text {a }}$	$1.388{ }^{\text {a }}$	3.547	$3.277^{\text {b }}$
$R_{w p} / \%$	2.694	1.674	$1.823{ }^{\text {a }}$	$1.823{ }^{\text {a }}$	5.026	$4.294{ }^{\text {b }}$
$\mathrm{R}_{\text {exp }} / \%$	2.231	1.484	$1.286{ }^{\text {a }}$	$1.286{ }^{\text {a }}$	2.753	$2.473{ }^{\text {b }}$
GOF	1.208	1.127	$1.417{ }^{\text {a }}$	$1.417{ }^{\text {a }}$	1.825	$1.737{ }^{\text {b }}$
$R_{p}{ }^{\prime} / \%^{\text {c }}$	12.388	16.206	$20.614^{\text {a }}$	$20.614^{\text {a }}$	6.262	$5.999{ }^{\text {b }}$
$R_{w p}{ }^{\prime} / \%^{\text {c }}$	10.234	11.332	$15.842{ }^{\text {a }}$	$15.842^{\text {a }}$	5.026	$7.376{ }^{\text {b }}$
$\boldsymbol{R}_{\text {exp }}{ }^{\prime} / \%{ }^{\text {c }}$	8.474	10.052	$11.182^{\text {a }}$	$11.182^{\text {a }}$	4.568	$4.294{ }^{\text {b }}$
Pyridine stacking angle 10 d	90	90	90	88.9(8)	86.7(3)	88.8(2)
(a) Rietveld refinement of a sample containing a mixture of α-phase (59.4\%) and β-phase (41.6\%). (b) Rietveld refinement of a sample containing a mixture of α-phase (18.7%) and β-phase (81.3%). (c) $R^{\prime}, R_{w p}$ ' and $R_{p}{ }^{\prime}$ values are background corrected according to the reference [41]. (d) Angle between the pyridine ring mean plane and the stacking direction (for $\mathbf{1 b} \mathbf{- \alpha - 3 b}$: [001] and for $\boldsymbol{\beta} \mathbf{- 3 b} \mathbf{-} \boldsymbol{\beta} \mathbf{- 4 b}$ [100].)						

Table S4. Crystallographic data of $\left[\mathrm{M}^{\prime \prime} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{1}\right]_{n}$.

	1c	2c	3 c	4c
Compound	$\left[\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}$	$\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}$	[$\left.\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{n}$	[$\left.\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}$
CSD number	1845142	1845151	1845161	1845165
Formula	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{MnN}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{FeN}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{CoN}$	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{NiN}_{2}$
MW/g.mol ${ }^{-1}$	318.86	319.76	322.85	322.61
Crystal system	Monoclinic	Orthorhombic	Orthorhombic	Orthorhombic
Space group (No.)	P $112_{1}{ }^{\text {a }}$ (4)	Pme 2_{1} (26)	Pmc 1_{1} (26)	Pm c 2_{1} (26)
a /A	3.834(7)	3.772(2)	3.740(1)	3.701(5)
b/A	7.258(1)	7.251(2)	7.231(2)	7.204(8)
c IA	16.547(7)	16.31(1)	16.167(6)	16.000(4)
$\alpha 1^{\circ}$	90	90	90	90
B ${ }^{\circ}$	90	90	90	90
$\underline{V}{ }^{\circ}$	93.41(1)	90	90	90
V / A^{3}	459.7(5)	446.1(8)	437.2(1)	426.7(1)
Z, Z'	2, 1	2, 1/2	2, 1/2	2, 1/2
Site symmetry of M	1	m	m	m
$D_{\text {calc }} / \mathbf{M g} \cdot \mathrm{m}^{-3}$	2.303	2.381	2.452	2.511
T/K	298	298	298	125
Radiation type	Cu Ka ${ }_{1}$	$\mathrm{Cu} \mathrm{Ka}_{1}$	CuKa	Cu Ka ${ }_{1}$
Wavelength IÅ	1.54056	1.54056	1.54056	1.54056
$2 \mathrm{E}_{\text {max }} 1^{\circ}$	80	100	100	100
R_{p} \%	1.696	1.633	1.506	2.715
$\mathrm{R}_{\mathrm{wp}} \mathrm{I} \%$	2.147	2.077	1.912	3.520
$\mathrm{R}_{\text {exp }} / \%$	1.695	1.714	1.555	2.757
GOF	1.266	1.212	1.230	1.277
$\mathrm{R}_{\mathrm{p}}{ }^{\prime} /{ }^{\text {b }}{ }^{\text {b }}$	14.577	18.079	21.223	7.416
$R_{w p}{ }^{\prime} /{ }^{\text {b }}{ }^{\text {b }}$	12.191	12.838	14.320	7.626
$\mathrm{Rexp}^{\prime} 1 \%{ }^{\text {b }}$	9.630	10.594	11.642	5.973

(a) For ease of comparison of 1 c to 4 c a non-standard space-group setting was used for 1c. $P 112_{1}$ is a non-standard setting of $P 2_{1}$.
(b) $R^{\prime}, R_{w p}$ ' and R_{p} ' values are background corrected according to the reference [41].

Text S1

Details on syntheses of $\left[\mathrm{M}^{\prime \prime} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{4}\right]$

Synthesis of [$\left.\mathrm{MnBr}_{2}(3-\mathrm{CNpy})_{4}\right]$ (1a). MnBr_{2} ($0.5 \mathrm{~g}, 2.33 \mathrm{mmol}$) was dissolved in 15 mL ethanol, 3-cyanopyridine ($0.96 \mathrm{~g}, 9.22 \mathrm{mmol}$) was dissolved in 35 mL ethanol. By mixing both solutions, a colorless powder was obtained. IR (cm-1): 3091(w), 2241(m) 1595(s); 1470(s), 1418(s), 1039(s), 1032(s), 818(s), 691(s), 644(s).

Synthesis of $\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{4}\right]$ (2a). $\mathrm{FeBr}_{2}(0.2 \mathrm{~g}, 0.93 \mathrm{mmol})$ was dissolved in 15 mL ethanol, 3 -cyanopyridine ($0.96 \mathrm{~g}, 9.22 \mathrm{mmol}$) was dissolved in 35 mL ethanol. By mixing both solutions, a yellow powder was obtained. IR (cm^{-1}): 3092(w), 2241(m), 1595(s), 1468(s), 1418(s), 1042(m), 1034(m), 816(s), 691(s), 644(s).

Synthesis of [$\left.\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{4}\right]$ (3a). $\mathrm{CoBr}_{2}(0.5 \mathrm{~g}, 2.286 \mathrm{mmol})$ was dissolved in 30 mL methanol, 3 -cyanopyridine ($1 \mathrm{~g}, 9.605 \mathrm{mmol}$) was dissolved in 35 mL methanol. By mixing both solutions, a violett powder was obtained. $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$: 3102(w), $2241(\mathrm{~m}), 1597(\mathrm{~s}), 1470(\mathrm{~m})$, 1418(m), 1042(m), 1034(m), 816(s), 692(s), 646(s).

Synthesis of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{4}\right]$ (4a). $\mathrm{NiBr}_{2}(0.202 \mathrm{~g}, 0.924 \mathrm{mmol})$ was dissolved in 30 mL DAA, 3-cyanopyridine ($0.4 \mathrm{~g}, 3.839 \mathrm{mmol}$) was dissolved in 35 mL DAA. By mixing both solutions, a light green powder was obtained. IR (cm¹): 3103 (w), 2243(s) 1597(s); 1470(s), 1410(s), 1044(m), 1034(m), 816(s), 692(s), 648(m).

Text S2

Details on preparation of $\left[\mathrm{M"Br}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}$

Preparation of $\left[\mathrm{MnBr}_{2}(\mathbf{3 - C N p y})_{2}\right]_{\mathrm{n}}$ (1b). 1b was prepared by thermal decomposition of [MnBr_{2} (3cypy) $\left.{ }_{4}\right]$ (1a). A flesh-colored powder was obtained. IR (cm-1): 3086(w), 2239(m), 1597(m), 1474(m), 1418(s), 1059(m), 1042(m), 800(s), 687(s), 648(s).

Preparation of $\left[\mathrm{FeBr}_{2}(\mathbf{3 - C N p y})_{2}\right]_{n}(\mathbf{2 b}) . \mathbf{2 b}$ was prepared by thermal decomposition of [$\left.\mathrm{FeBr}_{2}(3 \text { cypy })_{4}\right]$ (2a). A red powder was obtained and immediately transferred into a glass capillary (diameter: 0.5 mm) that was sealed afterwards. IR (cm^{-1}): 3084(w), 2240(m), 1597(m), 1474(m), 1418(s), 1042(m), 799(s), 685(s), 650(s).

Preparation of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}$ (3b). 3b was prepared by thermal decomposition of $\left[\mathrm{CoBr}_{2}(3 \mathrm{cypy})_{4}\right]$ (3a). A lilac powder was obtained. XRPD data revealed that this procedure generally leads to a mixture of $\boldsymbol{\alpha - 3 b}$ and $\beta-\mathbf{3 b}$. A phase-pure sample of $\alpha-3 b$ could not be obtained. Only once $\boldsymbol{\beta}-\mathbf{3 b}$ as pure phase could be obtained. $\operatorname{IR}\left(\mathrm{cm}^{-1}\right)$ of the mixture: $3102(\mathrm{w})$, 2236(m), 1599(s), 1472(m), 1419(s), 1045(m), 810(s), 797(s) 685(s), 650(s).

Preparation of $\left[\mathrm{NiBr}_{2}(\mathbf{3}-\mathrm{CNpy})_{2}\right]_{n}(\mathbf{4 b}) . \boldsymbol{\alpha}-\mathbf{4 b}$ and $\boldsymbol{\beta}-\mathbf{4 b}$ were prepared by thermal decomposition of $\left[\mathrm{NiBr}_{2}(3 c y p y)_{4}\right]$ (4a). XRPD data revealed that this procedure generally leads to a mixture of $\boldsymbol{\beta}-\mathbf{4 b}$ with a slight amount of $\boldsymbol{\alpha} \mathbf{- 4} \mathbf{b}$. $\boldsymbol{\alpha}-\mathbf{4 b}$ as pure phase can be obtained by cooling the mixture to $-100^{\circ} \mathrm{C}$. Pure $\beta-4 \mathrm{~b}$ could not be obtained. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$ of the mixture: 3071(w), 2236(s), 1601(s), 1474(m), 1423(m), 1047(w), 1036(m) 808(s), 687(s).

Text S3

Details on preparation of [$\left.\mathrm{M"}^{\mathrm{I}} \mathrm{Br}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}$

Preparation of $\left[\mathrm{MnBr}_{2}(\mathbf{3 - C N p y})_{1}\right]_{n}$ (1c). $\mathbf{1 c}$ was prepared by thermal decomposition of $\left[\mathrm{MnBr}_{2}(3 \mathrm{cypy})_{2}\right]_{\mathrm{n}}$ (1b). A light grey powder was obtained. IR (cm^{-1}): 3059(w), 2272(s), 1597(m), 1474(m), 1418(s), 1059(m), 1043(m), 800(s), 687(s), 648(s).

Preparation of $\left[\mathrm{FeBr}_{2}(\mathbf{3 - C N p y})_{1}\right]_{\mathrm{n}} \mathbf{(2 c) . ~ 2 c}$ was prepared by thermal decomposition of $\left[\mathrm{FeBr}_{2}(3 \mathrm{cypy})_{2}\right]_{\mathrm{n}}(\mathbf{2 b})$. An ochre powder was obtained. IR ($\left.\mathrm{cm}^{-1}\right)$: 3061(w), 2278(s), 1680(s), 1595(m), 1541(m), 1460(m), 1417(s), 1049(m), 1034(m), 806(s), 682(w), 667(m).

Preparation of $\left[\mathrm{CoBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}$ (3c). 3c was prepared by thermal decomposition of $\left[\mathrm{CoBr}_{2}(3 \mathrm{cypy})_{2}\right]_{\mathrm{n}}$ (3b). A light lilac powder was obtained. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3102(\mathrm{w}), 2287(\mathrm{~m}), 1622(\mathrm{~s})$, 1603(s), 1573(w), 1481(m), 1422(s), 808(s), 687(m), 652(s).

Preparation of $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}(4 \mathrm{c})$ was prepared by thermal decomposition of $\left[\mathrm{FeBr}_{2}(3 \mathrm{cypy})_{4}\right]$ (4a). A greyish ochre powder was obtained. $\mathrm{IR}\left(\mathrm{cm}^{-1}\right)$: 3057(m), 2288(s), 1599(s), 1477(m), 1418(s), 1034(m) 797(s), 683(s), 654(m).

Text S4

Details on structure solutions

$\left[\mathrm{FeBr}_{2}(3-\mathrm{CNpy})_{1}\right]_{\mathrm{n}}(\mathbf{2 c})$. The structure of $\mathbf{4 c}$ was used as starting point for the Rietveld refinement. Reflections of an unknown foreign phase were excluded during Pawley and Rietveld refinement (2θ range from 11.51° to $11.85^{\circ}, 12.40^{\circ}$ to $12.71^{\circ}, 24.30^{\circ}$ to 24.54°).
$\left[\mathrm{CoBr}_{2}(\mathbf{3 - C N p y})_{2}\right]_{\mathrm{n}}(\boldsymbol{\alpha}-\mathbf{3 b} / \boldsymbol{\beta}-\mathbf{3 b})$. XRPD data were collected at room temperature. For $\boldsymbol{\alpha}-\mathbf{3 b}$ 20 reflections in the low angle range were carefully selected for indexing, which led in an orthorhombic unit cell with $Z=2$ and lattice parameters similar to those of compounds $\mathbf{1 b}$ and 2b. In the first Rietveld refinement reflections of $\beta \mathbf{\beta} \mathbf{- 3 b}$ were excluded. For the subsequent simultaneous refinement of both phases, the structure of $\beta-4 \mathbf{b}$ was used as starting point for $\boldsymbol{\beta}-\mathbf{3} \mathbf{b}$. The investigated sample contained 59.4% of $\boldsymbol{\alpha}-\mathbf{3} \mathbf{b}$ and 41.6% of $\boldsymbol{\beta}-\mathbf{3 b}$. The final crystallographic data of both phases were taken from the simultaneous refinement.
$\left[\mathrm{CoBr}_{2}(\mathbf{3 - C N p y})_{1}\right]_{\mathrm{n}}(\mathbf{3 c})$. The structure of $\mathbf{4 c}$ was used as starting point for the Rietveld refinement. Reflections of an unknown foreign phase were excluded during Pawley and Rietveld refinement (2θ range from 11.675° to $11.93^{\circ}, 12.52^{\circ}$ to 12.83°).
$\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{\mathrm{n}}(\alpha-4 \mathbf{b})$. XRPD data of a phase-pure sample were collected at $-150^{\circ} \mathrm{C}$. $\left[\mathrm{NiBr}_{2}(3-\mathrm{CNpy})_{2}\right]_{n}(\beta-4 b)$. The structure of $\alpha-4 \mathbf{b}$ was used as a starting point for the structure solution of $\beta-\mathbf{4} \mathbf{b}$. The structure was solved by a fit to the room-temperature powder diagram (measured at room temperature) of the β-phase using the program FIDEL "Fit with deviating lattice parameters" [43], which uses a similarity index based on cross-correlation functions. Details will be published elsewhere [44]. The final Rietveld refinement revealed that the investigated sample contained 18.7% of the α-phase and 81.3% of the β-phase.

