Supplementary Information

for the article

Magnetostructural relationships in polymorphic ethylmalonate-containing copper(II) coordination polymers

Jorge Pasán,*^a Joaquín Sanchiz,^b Francesc Lloret,^c Miguel Julve^c and Catalina Ruiz-Pérez^a

^{a.} Laboratorio de Rayos X y Materiales Moleculares (MATMOL), Departamento de Física, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38200, La Laguna, Spain. E-mail: jpasang@ull.edu.es

^{b.} Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38200, La Laguna, Spain.

^{c.} Departamento de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46980 Paterna, València, Spain.

	1	2	3
Formula	C ₁₀ H ₂₂ O ₁₃ Cu ₂	C₅H ₈ O₅Cu	C₅H ₆ O ₆ Cu
Fw	477.35	211.64	225.64
Crystal system	Orthorhombic	Orthorhombic	Hexagonal
Space group	C222 ₁	C2cb	P65
a (Å)	9.9885(2)	9.770(3)	11.5965(8)
b (Å)	11.9939(2)	9.921(3	-
<i>c</i> (Å)	14.1518(3)	14.477(3)	10.5437(6)
V (Å)	1695.40(6)	1403.2(7)	1227.94(14)
Ζ	4	8	6
<i>Т</i> (К)	293(2)	293(2)	293(2)
ρ _{calc} (g·cm⁻³)	1.870	1.985	1.831
μ (Mo Kα, mm ⁻¹)	2.574	3.081	2.656
λ (Mo Kα, Å)	0.71073	0.71073	0.71073
Index ranges	-14 < <i>h</i> < 14	-12 < <i>h</i> < 10	-15 < <i>h</i> < 13
	-17 < <i>k</i> < 17	-10 < <i>k</i> <12	-15 < <i>k</i> < 15
	-20 < / < 20	-18 < <i>k</i> <15	-13 < / < 9
Indep. Reflections (<i>R_{int}</i>)	2801 (0.0286)	1408 (0.0653)	1916 (0.0440)
Obs. Reflections $[l > 2\sigma(l)]$	2706	1058	1813
Flack Parameter	0.005(13)	0.52(4)	0.03(4)
Parameters	135	108	120
Goodness of fit	1.053	1.030	1.159
$R[I > 2\sigma(I)]$	0.0213	0.0458	0.0509
$R_w [l > 2\sigma(l)]$	0.0489	0.0894	0.1333
R (all data)	0.0225	0.0759	0.0558
R_w (all data)	0.0494	0.0980	0.1356

 Table S1. Crystallographic data for complexes 1-3

Table S2. Selected bond lengths (Å) and angles (^o) for complexes 1-3 ^a
1

1						
Cu(1)–O(2)	2.0209(15)	Cu(2)–O(2w)	1.9727(17)			
Cu(1)–O(4)	1.9477(14)	Cu(2)–O(3w)	1.9700(17)			
Cu(1)–O(1w)	1.999(2)	Cu(2)–O(1)	2.3936(14)			
O(2)–Cu(1)–O(4)	90.87(6)	O(2w)–Cu(2)–O(3w)	174.35(8)			
O(2)–Cu(1)–O(2a)	115.07(10)	O(2w)–Cu(2)–O(1)	88.43(7)			
O(2)–Cu(1)–O(1w)	122.46(5)	O(2w)–Cu(2)–O(3wb)	92.55(8)			
O(2)–Cu(1)–O(4a)	92.35(7)	O(2w)–Cu(2)–O(1b)	91.04(7)			
O(4)–Cu(1)–O(1w)	87.00(5)	O(2w)–Cu(2)–O(2wb)	84.65(11)			
O(4)–Cu(1)–O(4a)	174.01(10)	O(3w)–Cu(2)–O(1)	96.54(7)			
		O(3w)–Cu(2)–O(1b)	83.96(7)			
2						
Cu(1)–O(2)	1.947(5)	O(2)-Cu(1)-O(1w)	96.5(3)			
Cu(1)–O(4)	1.956(6)	O(4)–Cu(1)–O(1c)	86.3(3)			
Cu(1)–O(1c)	1.963(6)	O(4)–Cu(1)–O(3d)	85.2(3)			
Cu(1)–O(3d)	1.972(6)	O(4)-Cu(1)-O(1w)	94.0(3)			
Cu(1)–O(1w)	2.264(7)	O(1c)–Cu(1)–O(3d)	92.7(3)			
O(2)–Cu(1)–O(4)	89.8(3)	O(1c)–Cu(1)–O(1w)	102.0(3)			
O(2)–Cu(1)–O(1c)	161.3(3)	O(3d)–Cu(1)–O(1w)	104.2(2)			
O(2)–Cu(1)–O(3d)	85.2(3)					
3						
Cu(1)–O(1e)	1.977(5)	O(1e)–Cu(1)–O(1w)	92.1(3)			
Cu(1)–O(2)	1.974(5)	O(2)–Cu(1)–O(3f)	89.2(2)			
Cu(1)–O(3f)	1.948(5)	O(2)–Cu(1)–O(4)	90.9(2)			
Cu(1)–O(4)	1.954(5)	O(2)–Cu(1)–O(1w)	105.7(3)			
Cu(1)–O(1w)	2.313(8)	O(3f)–Cu(1)–O(4)	179.8(3)			
O(1e)–Cu(1)–O(2)	161.9(2)	O(3f)–Cu(1)–O(1w)	95.5(2)			
O(1e)–Cu(1)–O(3f)	92.1(2)	O(4)–Cu(1)–O(1w)	84.6(3)			
O(1e)–Cu(1)–O(4)	87.7(2)					
^a Symmetry codes: (a) = $-x+1$, y, $-z+3/2$; (b) = x, $-y+1$, $-z+1$; (c) = x, $y-1/2$, $-z+1/2$; (d) = $x+1/2$, y, $-z+1/2$; (e)						
-y+1, x-y+1, z-1/3; (f) = y-1, -x+y, z+1/6.						

Table S3. Relevant hydrogen bonds for complexes 1-2^a

	1					
H-bond	<i>D…A</i> / Å	H…A∕Å	D–H…A / °			
O(1W)–H…O(1g)	2.681(2)	2.06(2)	168(3)			
O(2W)–H…O(3h)	2.668(2)	1.93(3)	172(4)			
O(2W)–H…O(2b)	2.664(2)	1.97(3)	161(3)			
O(3W)–H…O(3i)	2.707(2)	2.09(3)	163(3)			
O(3W)–H…O(4j)	2.789(2)	2.02(3)	170(3)			
C(2)–H…O(1Wk)	3.484(2)	2.69(3)	132(2)			
C(4)–H…O(2a)	3.334(2)	2.36(3)	161.5(18)			
2						
H-bond	<i>D…A</i> / Å	H…A∕Å	D–H…A / °			
O(1W)–H…O(2c)	2.748(8)	1.96(8)	134(3)			
O(1W)–H…O(1d)	2.762(7)	1.90(9)	142(6)			
C(2)–H…O(1W)	3.278(9)	2.49(8)	138(3)			
^a Symmetry codes: (a) = $-x+2$, y, $-z+3/2$; (b) = x, $-y+1$, $-z+2$; (c) = x, $y-1/2$, $-z+3/2$; (d) = x-						
1/2, y, -z+3/2; (g) = -x+3/2, y-1/2, -z+3/2; (h) = -x+3/2, y+1/2, -z+3/2; (i) = -x+1, y, -						
z+3/2; (j) = $-x+3/2$, $-y+1/2$, $z+1/2$; (k) = $x-1/2$, $y+1/2$, z.						

Figure S1. Powder X-ray diffraction pattern for compound 1.

Figure S2. Powder X-ray diffraction pattern for compound 2.

Figure S3. Powder X-ray diffraction pattern for compound 3.

Figure S4. View along the *c* crystallographic axis of the crystal packing of the chain compound **1**. Each $\{[Cu(H_2O)_4][Cu(Etmal)_2(H_2O)]\}_n$ chain is depicted in a different colour.

Figure S5. Fragment of the crystal structure of 1 with the atom numbering. The ellipsoids are presented in 50% probability.

Figure S6. Fragment of the crystal structure of 2 with the atom numbering. Ellipsoids are represented in 50% probability.

Figure S7. Fragment of the crystal structure of 3 with the atom numbering. Ellipsoids are represented in 50% probability.

Figures S8. Views of the topological representation of the (8,3)-etd structure of **3** along the *c* axis (top right), with central projection (top left) and along the *a* axis (bottom). The blue spheres represent the copper(II) ions and the orange ones the Etmal²⁻ ligands.