Supporting Information

Photochromic Naphthalenediimide Cd-MOFs based on Different Second

Dicarboxylic Acid Ligands

Ziyin Li,^a Junzhi Guo,^a Fahui Xiang,^a Quanjie Lin,^a Yingxiang Ye,^a Jindan Zhang,^a Shimin Chen,^a Zhangjing Zhang,^{*ab} and Shengchang Xiang^{*ab}

^aFujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, PR China ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, PR China

E-mail: zzhang@fjnu.edu.cn; scxiang@fjnu.edu.cn

Contents

Figure	S1		The	crystal	structure	of	FJU-
68							
Figure S2	Three seco	nd dicarbo	xylic acid lig	ands			S3
Figure S3	Schematic	diagram fo	or the 1D cha	nnel in three sir	ngle <i>dia</i> framework	ks of Cd-MC	OFsS3
Figure S4	The <i>dia</i> net	t topologie	s for three Co	d-MOFs			S4
Figure S5	The π - π sta	cking dista	ances in FJU	-67 and FJU-69)		S4
Figure S6	IR spectrur	n of FJU- (67, FJU-68 a	nd FJU-69			S5
Figure S7	PXRD patt	erns of the	simulated, a	s-synthesized F	JU-67		
Figure S8	PXRD patt	erns of the	simulated, a	s-synthesized F	JU-68		
Figure S9	PXRD patt	erns of the	simulated, a	s-synthesized F	JU-69		S6
Figure S1(TGA of F	CJU-67, FJ	U-68 and FJ	U-69			S6
Figure S11	Hydrogen	-bonded w	ater molecul	es inside the ch	annel of FJU-69		S7
Figure S12	l The photo	ographic in	nages of the I	H ₂ NDI before a	nd after UV irradia	ation	S7
Figure S13	The fluor	escence en	nission spectr	a for H ₂ NDI, F	JU-67, and FJU-6	9	S7
Table S1	Crystal Data	a and refine	ement results	for the FJU-67	7, FJU-68, FJU-69)	
Table S2	Selected bor	nd lengths	[Å] for FJU-	67, FJU-68 and	d FJU-69		
Table S3	Selected bo	nd angles [[°] for FJU-6	7, FJU-68 and 1	FJU-69		

Figure S1. (a) Local coordination environment of Cd(II) atoms in FJU-68; (b) the perspective view of a single *dia* unit cage and (c) a 3D single *dia* framework in FJU-68.

Figure S2. Three second dicarboxylic acid ligands (H₂BDC, NH₂-H₂BDC, and H₂NDC).

Figure S3. Schematic diagram for the evolution of the rhombic 1D channel in the single *dia* frameworks for three Cd-MOFs with the participation of the different second dicarboxylic acid ligands.

Figure S4. The *dia* net topologies for FJU-67, FJU-68 (a) and FJU-69 (b).

Figure S5. The π - π stacking distances in **FJU-67** (a) and **FJU-69** (b) between adjacent H₂NDI ligands accompany with the alternative H₂NDI and H₂NDC ligands.

Figure S6. IR spectrum of FJU-67, FJU-68 and FJU-69.

Figure S7. PXRD patterns of the simulated, as-synthesized FJU-67.

Figure S8. PXRD patterns of the simulated, as-synthesized FJU-68.

Figure S9. PXRD patterns of the simulated, as-synthesized FJU-69.

Figure S10. TGA of FJU-67, FJU-68 and FJU-69.

Figure S11. Hydrogen-bonded water molecules inside the channel of FJU-69 along the *c* axis.

Figure S12. The photographic images of the H₂NDI before and after UV irradiation, showing there is no photochromic behavior in only ligand of H₂NDI.

Figure S13. The fluorescence emission spectra for H₂NDI, FJU-67, and FJU-69.

	FJU-67	FJU-68	FJU-69
CCDC	1851265	1851266	1851267
empirical formula	$C_{32}H_{22}CdN_6O_8$	$C_{32}H_{20}CdN_7O_8$	$C_{36}H_{26}CdN_6O_9$
formula weight	730.95	742.95	799.03
Temperature	293 K	293 К	293 K
Radiation	$CuK\alpha (\lambda = 1.54184 \text{ Å})$	CuKα (λ = 1.54184 Å)	$CuK\alpha$ ($\lambda = 1.54184$)
crystal system	triclinic	triclinic	monoclinic
space group	P-1	<i>P-1</i>	Pn
Dimensions	3D	3D	3D
a(Å)	10.9477(5)	11.2419(4)	8.9688(2)
<i>b</i> (Å)	12.6996(5)	12.4720(4)	13.3571(3)
<i>c</i> (Å)	12.7984(4)	12.7658(4)	13.4352(3)
α	110.328(3)°	112.810(3)°	90°
β	100.145(3)°	98.524(3)°	102.071(2)°
γ	108.530(4)°	107.333(3)°	90°
Volume (Å ³)	1497.63(10)	1502.58(9)	1573.91(6)
Ζ	2	2	2
Density (calcd)	1.621 g/cm ³	1.642 g/cm ³	1.686 g/cm ³
Absorption	6.392 mm ⁻¹	0.793 mm ⁻¹	6.166 mm ⁻¹
Goodness-of-fit on F ²	1.045	1.092	1.060
<i>F</i> (000)	736.0	746.0	808.0
<i>R</i> 1, <i>wR</i> 2 [<i>I</i> >2 σ (<i>I</i>)] ^(a)	0.0232, 0.0589	0.0277, 0.0737	0.0257, 0.0644
R1, $wR2$ (all data) ^(a)	0.0267, 0.0610	0.0298, 0.0754	0.0295, 0.0677

 Table S1 Crystal Data and refinement results for the FJU-67, FJU-68, FJU-69.

F	FJU-67	F	`JU-68	FJU-69		
Atom-Atom	bond lengths [Å]	Atom-Atom	bond lengths [Å]	Atom-Atom	bond lengths [Å]	
Cd1-O2	2.3231(17)	Cd1-O2	2.3711(17)	Cd1-O2	2.289(9)	
Cd1-O3	2.4156(16)	Cd1-O3	2.308(2)	Cd1-O3	2.296(8)	
Cd1-O1	2.3158(18)	Cd1-O4	2.317(2)	Cd1-O4	2.450(8)	
Cd1-O4	2.3170(17)	Cd1-O1	2.349(19)	Cd1-O1	2.472(9)	
Cd1-N3	2.3155(17)	Cd1-N1	2.310(2)	Cd1-N3	2.278(9)	
Cd1-N2	2.2541(17)	Cd1-N3	2.252(2)	Cd1-N1	2.296(9)	

Table S2 Selected bond lengths [Å] for FJU-67, FJU-68 and FJU-69.

 Table S2 Selected bond angles [°] for FJU-67, FJU-68 and FJU-69.

FJU-67		FJU-6	8	FJU-69		
Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°	Atom-Atom-Atom	Angle/°	
O2-Cd1-O3	96.22(6)	O3-Cd1-O2	96.43(7)	O2-Cd1-O3	80.61(15)	
O1-Cd1-O2	56.26(6)	O3-Cd1-O4	56.39(7)	O2-Cd1-O4	97.7(3)	
O1-Cd1-O3	106.06(7)	O3-Cd1-O1	102.98(8)	O2-Cd1-O1	55.1(3)	
O1-Cd1-O4	152.68(7)	O3-Cd1-N1	99.60(8)	O2-Cd1-N1	148.5(3)	
O4-Cd1-O2	102.84(7)	O4-Cd1-O2	106.21(8)	O3-Cd1-O4	54.0(3)	
O4-Cd1-O3	55.02(5)	O4-Cd1-O1	153.01(8)	O3-Cd1-O1	99.0(3)	
N3-Cd1-O2	102.51(6)	O1-Cd1-O2	55.16(6)	O3-Cd1-N1	101.7(3)	
N3-Cd1-O3	133.71(6)	N1-Cd1-O2	134.79(7)	O4-Cd1-O1	146.93(9)	
N3-Cd1-O1	119.61(7)	N1-Cd1-O4	117.90(8)	N3-Cd1-O2	102.0(4)	
N3-Cd1-O4	79.52(6)	N1-Cd1-O1	80.05(7)	N3-Cd1-O3	148.3(3)	
N2-Cd1-O2	144.85(7)	N3-Cd1-O2	97.86(8)	N3-Cd1-O4	94.6(3)	
N2-Cd1-O3	96.49(7)	N3-Cd1-O3	146.58(8)	N3-Cd1-O1	108.3(3)	
N2-Cd1-O1	88.71(6)	N3-Cd1-O4	90.56(8)	N3-Cd1-N1	92.18(11)	
N2-Cd1-O4	111.30(7)	N3-Cd1-O1	109.99(9)	N1-Cd1-O4	109.1(3)	
N2-Cd1-N3	91.90(6)	N3-Cd1-N1	91.40(8)	N1-Cd1-O1	93.9(3)	