Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2019

SUPPLEMENTARY INFORMATION

MOF-Derived Micro Structural Interconnected Network Porous Mn₂O₃/C as the Negative Electrode Material for Asymmetric Supercapacitor Device

Sadayappan Nagamuthu and Kwang-Sun Ryu*

Department of Chemistry, University of Ulsan, Muger-dong, Nam-gu, Ulsan 680-749, Republic of Korea

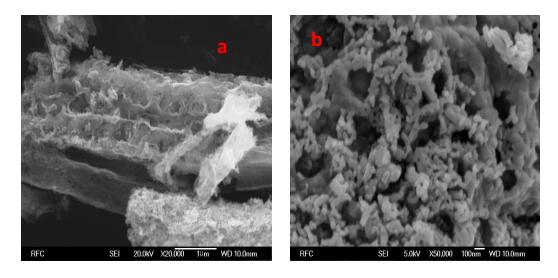
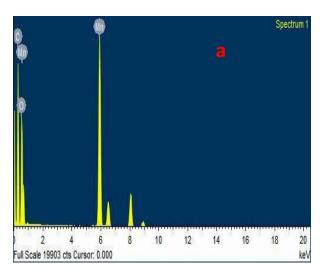



Figure S1: FESEM images of Mn_2O_3/C samples calcined at $500^{\circ}C$ with the heating rate of $5^{\circ}C$

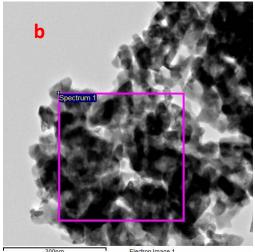


Figure S2: XDAX pattern of Mn₂O₃/C samples

Asymmetric supercapacitor device Fabrication:

A coin cell was fabricated using activated carbon as the positive electrode (3.936 mg) and Mn_2O_3/C as the negative electrode (1 mg). Total mass of the electrode material is 4. 936 mg. Whatman filter paper was used as the separator, which had been presoaked in a 1 M Na_2SO_4 electrolyte for 24 h prior to device fabrication.

Mass balancing for Device fabrication:

The electrode mass ratio should be optimized prior to asymmetric device fabrication

$$\frac{m_+}{m_-} = \frac{C_- X V_-}{C_+ X V_+}$$

where m_+ is mass of the positive electrode (activated carbon) (g), m_- is the mass of the negative electrode (g), C_- is the specific capacity of the negative electrode (C g^{-1}), V_- is the potential range of the negative electrode (V), C_+ is the specific capacity of the positive electrode (C g^{-1}), and V_+

is the potential range of the positive electrode (V). The optimal mass ratio is \sim 0.18 is the positive to negative electrodes.

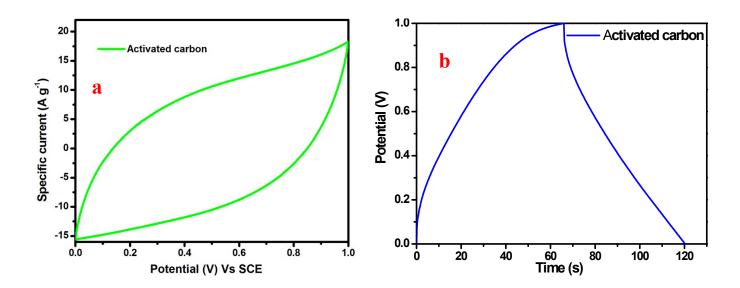


Figure S3: (a) CV curve of activated carbon at 25 mVs⁻¹ and (b) Charge discharge curve of activated carbon electrode at 2 A g⁻¹ in aqueous electrolyte

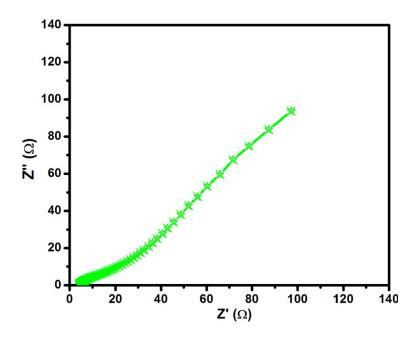


Figure S4: Nyqusit plot for asymmetric supercapacitor device after cycling