## **Supplementary Information**

# High temperature expulsion of thermolabile groups for porespace expansion in metal-organic frameworks

Macguire R. Bryant,<sup>a</sup> Timothy A. Ablott,<sup>a</sup> Shane G. Telfer,<sup>b</sup> Lujia Liu,<sup>c</sup> and Christopher Richardson<sup>\*a</sup>

<sup>a</sup> School of Chemistry and Biomolecular Science, University of Wollongong, Wollongong NSW 2522, Australia

<sup>b</sup> MacDiarmid Institute of Advanced Materials and Nanotechnology, Institute of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand

<sup>c</sup> Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States

## **Table of Contents**

| 1. | Ligand Syntheses                             | 2  |
|----|----------------------------------------------|----|
| 2. | NMR Spectra                                  | 5  |
| 3. | Single Crystal X-ray Diffraction             | 9  |
| 4. | Powder X-ray Diffraction                     | 11 |
| 5. | TG-DSC Data                                  | 12 |
| 6. | N2 Isotherms & BET Surface Area Calculations | 13 |
| 7. | Geometric Surface Area                       | 16 |
| 8. | References                                   | 16 |

## 1. Ligand Syntheses



Figure S1 Synthetic pathway to H<sub>2</sub>bpdcPSO with yields; (i) MeMgBr, THF, 0 °C; (ii) Propane thiol, Znl<sub>2</sub>, DCE, reflux; (iii) mCPBA, CH<sub>2</sub>Cl<sub>2</sub>, 0 °C; (iv) 1M NaOH, MeOH/THF, rt.

## Dimethyl 2-(1-hydroxyethyl)-[1,1'-biphenyl]-4,4'-dicarboxylate

A 3.0 M solution of methylmagnesium bromide in diethyl ether (2.23 mL, 6.69 mmol) was added dropwise *via* syringe to dimethyl 2-formyl-[1,1'-biphenyl]-4,4'-dicarboxylate (1.90 g, 6.37 mmol) dissolved in anhydrous THF (13 cm<sup>3</sup>) at ice bath temperature. After an hour at ice bath temperature the reaction wasquenched with acidified water (5mLof 1.0MHCl in 20 mL of water) with stirring. The mixture was rotary



evaporated to a residue, taken up in EtOAc (50 mL), washed with  $H_2O(3 \times 50 \text{ mL})$  and saturated NaCl solution (50 mL), dried over Na<sub>2</sub>SO<sub>4</sub> and rotary evaporated under reduced pressure to produce a yellow oil that solidified on standing. Yield = 1.94g(98%).  $\delta_H$  (400 MHz, CDCl<sub>3</sub>) 8.38 (1 H, d, J1.7), 8.11 (2 H, d, J8.5), 7.99 (1 H, dd, J8.0, 1.8), 7.39 (2 H, d, J8.5), 7.27 (1 H, d, J8.4), 5.00 – 4.91 (1 H, m), 3.95 (6 H, s), 1.81 (1 H, s), 1.41 (3 H, d, J6.4).  $\delta$  (101 MHz, CDCl<sub>3</sub>) 167.51, 167.47, 145.42, 144.37, 144.08, 130.93, 130.54, 130.27, 130.11, 129.77, 128.94, 127.80, 66.87, 52.93, 52.90, 25.67.

## Dimethyl 2-(1-(propylthio)ethyl)-[1,1'-biphenyl]-4,4'-dicarboxylate

Anhydrous zinc(II) iodide (275.2 mg, 0.086 mmol) was added to dimethyl 2-(1-hydroxyethyl)-[1,1'-biphenyl]-4,4'dicarboxylate (541.3 mg, 1.72 mmol) dissolved in anhydrous DCE (18 cm<sup>3</sup>) and stirred vigorously. Propane thiol (160  $\mu$ L, 1.72 mmol) was added to the pink suspension after 20 minutes and the mixture refluxed with stirring under anhydrous conditions for 24 hours The cooled solution was



quenched with distilled  $H_2O$  and transferred to a separatory funnel. The aqueous layer was run off and the organic solution washed with saturated NaCl solution, dried over Na<sub>2</sub>SO<sub>4</sub>, and rotary evaporated under reduced pressure to yield a yellow oil. Yield = 595.8 mg (93%). This product was used without purification in the next step.

## Dimethyl 2-(1-(propylsulfinyl)ethyl)-[1,1'-biphenyl]-4,4'-dicarboxylate (Me<sub>2</sub>bpdc-PSO)

mCPBA (33.3 mg, 0.193 mmol), dissolved in  $CH_2Cl_2$  (1.5 cm<sup>3</sup>), was added dropwise over one hour to a stirred solution of dimethyl 2-(1-(propylthio)ethyl)-[1,1'-biphenyl]-4,4'- dicarboxylate (73.4 mg, 0.197 mmol) in  $CH_2Cl_2$  (1.5 cm<sup>3</sup>) chilled in an ice bath. After two hours the organic solution was diluted with  $CH_2Cl_2$  (20 cm<sup>3</sup>), transferred to a separatory funnel and washed with saturated NaHCO<sub>3</sub> solution (2x),  $H_2O$ ,



and then rotary evaporated under reduced pressure to produce a yellow oil. The oil was purified *via* silica gel column chromatography ( $R_f$ = 0.32, 1:1 EtOAc:CH<sub>2</sub>Cl<sub>2</sub>). Yield=37.6 mg (49%) with an approximate 2.7:1 ratio of diastereomers. No further separation was attempted. <sup>1</sup>HNMR  $\delta_H$  (400 MHz; CDCl<sub>3</sub>).8.27(1H, d, J1.6, Minor), 8.14(2H, d, J8.4, Major), 8.13(2H, d, J8.6, Minor), 8.08(1 H, d, J 1.6, Major), 8.06 (1 H, dd, J 8.0, 1.6, Minor), 8.04 (1 H, dd, J 8.0, 1.7, Major), 7.43 (2 H, d, J 7.6, Minor), 7.40 (1 H, d, J7.9, Major), 7.38 (2 H, d, J7.9, Minor), 7.34 (2 H, d, J 8.4, Major), 4.03-3.93 (~9.5H, m, Major + Minor (4×–CH<sub>3</sub>&2×–CH)), 2.12(2H, m (pseudotriplet), Major + Minor–CH<sub>2</sub>), 1.79(3H, d, J7.1, Major), 1.70(3H, d, J7.2, Minor), 1.60-1.40(2H, m, Major + Minor–CH<sub>2</sub>), 0.93(3 H, t, J7.4, Minor), 0.85 (3 H, t, J7.4, Major). <sup>13</sup>C NMR  $\delta_C$  (101 MHz; CDCl<sub>3</sub>) A full list of signals is provided here without attempt to assign to major or minor diastereomers. Please note the provision of this spectrum. 167.29, 167.16, 167.11, 166.86, 146.87, 146.28, 145.13, 144.72, 136.15, 134.68, 131.29, 131.24, 130.95, 130.80, 130.69, 130.51, 130.42, 130.22, 130.06, 129.81, 129.65, 129.49, 78.02, 77.70, 77.38, 58.32, 55.52, 53.10, 53.04, 53.01, 52.98, 52.16, 51.84, 17.25, 16.98, 16.94, 16.78, 14.04, 13.84.

### 2-(1-(Propylsulfinyl)ethyl)-[1,1'-biphenyl]-4,4'-dicarboxylic acid (H<sub>2</sub>bpdc-PSO)

1.0 M NaOH (190  $\mu$ L, 0.19 mmol) was added dropwise to dimethyl 2-(1-(propylsulfinyl)ethyl)-[1,1'-biphenyl]-4,4'dicarboxylate (33.8 mg, 0.087 mmol) dissolved in a mixture of MeOH (1.5 cm<sup>3</sup>) and THF (0.5 cm<sup>3</sup>). The solution was stirred for 18 hours at room temperature before dilution with distilled H<sub>2</sub>O (2 cm<sup>3</sup>) and acidification with 1.0 MHCI. A white precipitate was collected by vacuum filtration, washed with of



H<sub>2</sub>O (3×), and air died in the fume hood for 18 hours. Yield = 19.7 mg (63%). This gives ~6:1 ratio of diastereomers; only signals for the major diastereomer are reported here: <sup>1</sup>H NMR  $\delta_{H}$  (400 MHz;  $d_{6^{-}}$  DMSO) 13.16(2H, s(br)), 8.06(2H, d, J8.1), 7.96(2H, m), 7.47(3H, m), 3.87(1H, q, J6.9), 2.26(1 H, m 1×-CH), 2.11 (1 H, m 1×-CH), 1.62 (3 H, d, J 6.9), 1.34 (1 H, m 1×-CH), 1.22 (1 H, m, 1×-CH), 0.76 (1 H, t, J 7.4). <sup>13</sup>C NMR  $\delta_{C}$  (101 MHz; CDCl<sub>3</sub>) 167.04, 166.80, 145.13, 143.62, 135.95, 130.89, 130.70, 130.39, 129.70, 129.53, 128.67, 128.42, 55.55, 50.41, 15.56, 14.05, 12.93.



Figure S 2 Synthetic pathway to H<sub>2</sub>bpdc-CH=CH<sub>2</sub> with yields; (i) Ph<sub>3</sub>PMeBr, <sup>n</sup>BuLi, THF, 0 °C; (ii) NaOH, THF/MeOH.

#### Dimethyl 2-vinyl-[1,1'-biphenyl]-4,4'-dicarboxylate (Me<sub>2</sub>bpdc-CH=CH<sub>2</sub>)

Anhydrous, N<sub>2</sub> sparged THF  $(2.5 \text{ cm}^3)$  was admitted *via* syringe through a Subaseal to a dry flask charged with methyltriphenylphosphonium bromide (108.0mg, 0.302 mmol) and a stir bar under N<sub>2</sub>. After chilling to ice bath temperature, 2.5 Mn-butyl lithium in diethyl ether (120 µL,

0.302 mmol) was added dropwise via syringe, and the mixture left to stir for 10 minutes. A solution of dimethyl2-formyl-[1,1'-biphenyl]-4,4'-dicarboxylate (60.0 mg, 0.201 mmol) in anhydrous, N<sub>2</sub> sparged THF (2.0 cm<sup>3</sup>) was then added dropwise and the cooling bath was removed. The reaction was quenched with H<sub>2</sub>O after stirring for 16 hours at room temperature. The product was obtained as an oil following extraction of the aqueous solution with diethyl ether (2x), washing the combined organic extracts with H<sub>2</sub>O (3x), saturated NaCl solution, drying over Na<sub>2</sub>SO<sub>4</sub>, decantation and rotary evaporation. The product was purified by silica gel column chromatography (R<sub>f</sub>0.83, CH<sub>2</sub>Cl<sub>2</sub>). Yield = 44.1 mg (74%). <sup>1</sup>HNMR  $\delta_{H}$  (400 MHz; CDCl<sub>3</sub>) 8.33 (1H, d, J1.6), 8.11 (2H, d, J8.5), 8.00 (1H, dd, J 8.0, 1.7), 7.44 (2H, d, J8.5), 7.37 (1H, d, J8.0), 6.65 (1H, dd, J17.5, 11.0), 5.83 (1H, d, J17.4), 5.30 (1H, d, J11.0), 3.97 (3H, s), 3.96 (3H, s). <sup>13</sup>CNMR  $\delta_{C}$  (101 MHz; CDCl<sub>3</sub>) 167.51, 145.25, 144.57, 136.77, 135.31, 130.72, 130.53, 130.32, 130.16, 130.07, 129.23, 128.06, 117.35, 52.94, 52.90.

#### 2-Vinyl-[1,1'-biphenyl]-4,4'-dicarboxylic acid (H<sub>2</sub>bpdc-CH=CH<sub>2</sub>)

1.0 M NaOH aqueous solution was added dropwise with stirring to dimethyl 2-vinyl-[1,1'-biphenyl]-4,4'-dicarboxylate (30.5 mg, 0.103 mmol) dissolved in a mixture of 3:1 MeOH:THF (4 cm<sup>3</sup>), and the mixture was stirred for 18 hours at room temperature. MeOH and THF were removed by







## 2. NMR Spectra



Figure S 3 <sup>1</sup>H NMR spectrum of the diastereomeric mixture of dimethyl 2-(1-(propylsulfinyl)ethyl)-[1,1'-biphenyl]-4,4'dicarboxylate, Me<sub>2</sub>bpdcPSO, in CDCl<sub>3</sub>.



Figure S 4 <sup>13</sup>C NMR spectrum of the diastereomeric mixture of Me<sub>2</sub>bpdcPSO in CDCl<sub>3</sub>.



Figure S 5 <sup>1</sup>H NMR spectrum of the diastereomeric mixture of 2-(1-(propylsulfinyl)ethyl)-[1,1'-biphenyl]-4,4'-dicarboxylic acid, H<sub>2</sub>bpdcPSO, in  $d_6$ -DMSO.



Figure S 6 <sup>13</sup>C NMR spectrum of the diastereomeric mixture of H<sub>2</sub>bpdcPSO in *d*<sub>6</sub>-DMSO.



Figure S 7: <sup>1</sup>H NMR spectrum of 2-vinyl-[1, 1'-biphenyl]-4,4'-dicarboxylic acid, H<sub>2</sub>bpdc-CH=CH<sub>2</sub>, in *d*<sub>6</sub>-DMSO.



**Figure S 8** <sup>13</sup>C NMR spectrum of H<sub>2</sub>bpdc-CH=CH<sub>2</sub> in  $d_{6}$ -DMSO.



Figure S 9 <sup>1</sup>H NMR spectra recorded in DCI/d<sub>6</sub>-DMSO of digested WUF-18 (lower spectrum) and digested WUF-19PSM (upper spectrum).

**Table S1 S**olvothermal conditions applied to Me<sub>2</sub>bpdc-PSO, and proportion of Me<sub>2</sub>bpdc-CH=CH<sub>2</sub> in the product as determined by <sup>1</sup>H NMR spectroscopic analysis

| Me <sub>2</sub> bpdcPSO | $Zn(NO_3)_2 \cdot 6H_2O$ | Temp.                 | Solvent        | Solvent  | Conversion to                           |
|-------------------------|--------------------------|-----------------------|----------------|----------|-----------------------------------------|
| (mmol)                  | (mmol)                   | ( <b>•</b> <i>C</i> ) | Composition    | Volume   | Me <sub>2</sub> bpdc-CH=CH <sub>2</sub> |
|                         |                          |                       |                | $(cm^3)$ |                                         |
| 0.039                   | 0.116                    | 100                   | DMF            | 1.5      | 64%                                     |
| 0.030                   | 0.090                    | 80                    | DMF: EtOH 3:1  | 1.2      | 18%                                     |
| 0.027                   | 0.036                    | 80                    | DMF: EtOH 3:1  | 1.2      | 22%                                     |
| 0.039                   | 0.052                    | 75                    | DMF : EtOH 3:1 | 1.8      | 10%                                     |

#### 3. Single Crystal X-ray Diffraction

| able S 2 Crystal data and stru | cture refinement for | MB5071b (WUF-19) |
|--------------------------------|----------------------|------------------|
|--------------------------------|----------------------|------------------|

| Identification code                               | MB5071b                                                |
|---------------------------------------------------|--------------------------------------------------------|
| Empirical formula                                 | $C_{48}H_{31}O_{13.5}Zn_4$                             |
| Formula weight                                    | 1085.21                                                |
| Temperature/K                                     | 292                                                    |
| Crystal system                                    | monoclinic                                             |
| Space group                                       | C2/m                                                   |
| a/Å                                               | 24.47(2)                                               |
| b/Å                                               | 24.029(17)                                             |
| c/Å                                               | 17.149(12)                                             |
| α/°                                               | 90                                                     |
| β/°                                               | 90.869(18)                                             |
| γ/°                                               | 90                                                     |
| Volume/Å <sup>3</sup>                             | 10082(13)                                              |
| Z                                                 | 4                                                      |
| $\rho_{calc}g/cm^3$                               | 0.715                                                  |
| $\mu/\text{mm}^{-1}$                              | 1.333                                                  |
| F(000)                                            | 2188.0                                                 |
| Crystal size/mm <sup>3</sup>                      | 0.25 	imes 0.25 	imes 0.1                              |
| Radiation                                         | $CuK\alpha \ (\lambda = 1.54178)$                      |
| $2\Theta$ range for data collection/ <sup>c</sup> | 11.458 to 72.696                                       |
| Index ranges                                      | $-18 \le h \le 17, -16 \le k \le 16, -13 \le l \le 11$ |
| Reflections collected                             | 11545                                                  |
| Independent reflections                           | 2365 [ $R_{int} = 0.1675$ , $R_{sigma} = 0.1437$ ]     |
| Data/restraints/parameters                        | 2365/473/266                                           |
| Goodness-of-fit on F <sup>2</sup>                 | 2.771                                                  |
| Final R indexes [I>= $2\sigma$ (I)]               | $R_1 = 0.1810, wR_2 = 0.4599$                          |
| Final R indexes [all data]                        | $R_1 \!=\! 0.2370,  wR_2 \!=\! 0.4986$                 |
| Largest diff. peak/hole / e Å <sup>-3</sup>       | 0.94/-1.43                                             |

Diffraction data were collected at room temperature using a Curotating anode source and a curved image plate detector. The data quality for this structure was moderate a reflected by the diffraction and refinement statistics. However, it should be borne in mind the porous nature of the sample with large voids in the structure along the c-axis, which is filled with disordered solvent. The SQUEEZE routine in Platon was not applied. Also, the atoms of the vinyl substituents were implanted in chemically sensible positions and held fixed during refinement to complete the crystallographic model. Consequently, the goodness-of-fit value is high (2.77). The structural model is consistent with many other members of the IRMOF-9 family and it affords an unambiguous assignment of the framework, with the SBU and ligand backbones defined well.

Fig. S10 shows the asymmetric unit of WUF-19. It contains one full Zn atom (Zn4), two half Zn atoms (Zn2, Zn3), a half oxido atom (O1), one full ligand (C10-C23, O38-O41), affixed with a vinyl tag group (C60-C61), and a second ligand, based on C24-C35, O24, O36-O37, that straddles a mirror plane (Fig. S11). The atoms of this ligand not lying across the plane are O24, C26-C27 and the affixed vinyl tag

group (C70-C71), the latter of which was assigned half-occupancy due to symmetry-related disorder brought about by the mirror plane. A rigid body restraint was placed over all non-hydrogen atoms and restraints to regularise the geometry and ADPs of C11-C16 and C17-C22 were applied. The vinyl tag groups were positionally fixed in representative positions and refined isotropically.



Figure S 10 A plot of the asymmetric unit of WUF-19 with thermal ellipsoids at 50%. The solvate water molecule is omitted.



Figure S 11 A view showing the atoms of the asymmetric unit laying on a mirror plane in the unit cell of WUF-19.

## 4. Powder X-ray Diffraction



Figure S12 PXRD patterns for activated WUF-19PSM (red), activated WUF-18 (blue) and the calculated pattern for WUF-19 from the single crystal structure analysis.

#### 5. TG-DSC Data



 $\label{eq:FigureS13:} FigureS13: TG (blue line) and DSC (red line) responses for activated Zn_4O (bpdc-CH=CH_2)_3 (WUF-19) under a combined flow of N_2 (20 \ cm^3/min) and compressed air (20 \ cm^3/min).$ 

## 6. N<sub>2</sub> Isotherms & BET Surface Area Calculations



 $\label{eq:FigureS14} FigureS14\,N_2\,ads or ption-desorption is otherm at 77\,K for WUF-18. Open symbols represent adsorption and closed symbols represent desorption.$ 

| BET summary for WUF-18     |              |                     |  |
|----------------------------|--------------|---------------------|--|
| Slope                      | 1            | .840                |  |
| Intercept                  | 1.6          | 46e-03              |  |
| Correlation coefficient, r | 0.9          | 99981               |  |
| C constant                 | 1118.843     |                     |  |
| Surface Area               | 1891.491     |                     |  |
| Relative Pressure          | Volume @ STP | 1 / [W((Po/P) - 1)] |  |
| 9.00051e-03                | 396.0433     | 1.8349e-02          |  |
| 1.00216e-02                | 401.8459     | 2.0156e-02          |  |
| 1.21335e-02                | 408.9285     | 2.4032e-02          |  |
| 1.51255e-02                | 417.8357     | 2.9409e-02          |  |
| 2.56209e-02                | 433.8173     | 4.8497e-02          |  |
| 3.94582e-02                | 444.0074     | 7.4026e-02          |  |
| 5.19853e-02                | 449.8752     | 9.7528e-02          |  |



Figure S15  $N_2$  adsorption-desorption isotherm at 77 K for WUF-19PSM. Open symbols represent adsorption and closed symbols represent desorption.

| BET summary for WUF-19PSM  |              |                     |  |
|----------------------------|--------------|---------------------|--|
| Slope                      | 1            | .581                |  |
| Intercept                  | 1.8          | 52e-03              |  |
| Correlation coefficient, r | 0.9          | 99981               |  |
| C constant                 | 854.976      |                     |  |
| Surface Area               | 2199.798     |                     |  |
| Relative Pressure          | Volume @ STP | 1 / [W((Po/P) - 1)] |  |
| 8.05453e-03                | 440.7571     | 1.4740e-02          |  |
| 9.05966e-03                | 450.2308     | 1.6247e-02          |  |
| 1.00723e-02                | 457.8783     | 1.7780e-02          |  |
| 1.20548e-02                | 468.2912     | 2.0848e-02          |  |
| 1.49879e-02                | 479.3062     | 2.5401e-02          |  |
| 3.14263e-02                | 505.0632     | 5.1401e-02          |  |
| 4.15687e-02                | 512.4348     | 6.7721e-02          |  |



Figure S16  $N_2$  adsorption-desorption isotherm at 77 K for WUF-19. Open symbols represent adsorption and closed symbols represent desorption.

| BET summary for WUF-19     |              |                     |  |
|----------------------------|--------------|---------------------|--|
| Slope                      | 1            | .562                |  |
| Intercept                  | 1.6          | 51e-03              |  |
| Correlation coefficient, r | 0.9          | 99977               |  |
| C constant                 | 946.691      |                     |  |
| Surface Area               | 2227.731     |                     |  |
| Relative Pressure          | Volume @ STP | 1 / [W((Po/P) - 1)] |  |
| 8.10695e-03                | 452.2276     | 1.4461e-02          |  |
| 9.01753e-03                | 460.2863     | 1.5818e-02          |  |
| 1.00287e-02                | 467.6476     | 1.7332e-02          |  |
| 1.20112e-02                | 478.2028     | 2.0341e-02          |  |
| 1.51274e-02                | 489.1640     | 2.5123e-02          |  |
| 2.81077e-02                | 510.0338     | 4.5369e-02          |  |
| 4.19472e-02                | 520.5672     | 6.7296e-02          |  |

## 7. Geometric Surface Area

Geometric surface area was calculated using the RASPA software package<sup>1</sup> using the method described previously.<sup>2-4</sup>Briefly, anitrogen probe with a diameter of 3.681 Å is rolled over the internal pore space of the framework. Symmetry-generated disordered components and the lattice water molecule of the framework were removed to generate a *P*1 model for calculation. Van der Waals diameters, derived from the DREIDING forcefield, were used for the framework atoms.<sup>5</sup> The Lennard-Jones parameters for the framework atoms are listed as follows:

| Framework atoms | $\sigma$ (Å) | $\varepsilon/k_B(\mathbf{K})$ |
|-----------------|--------------|-------------------------------|
| C (MOF)         | 3.473        | 47.856                        |
| O (MOF)         | 3.033        | 48.158                        |
| H (MOF)         | 2.846        | 7.649                         |
| Zn (MOF)        | 4.045        | 27.677                        |

#### 8. References

- (1) Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. *Mol. Simul.* **2016**, *42*, 81.
- (2) Düren, T.; Millange, F.; Férey, G.; Walton, K. S.; Snurr, R. Q. *J. Phys. Chem.* C**2007**, *111*, 15350.
- (3) Frost, H.; Düren, T.; Snurr, R. Q. J. Phys. Chem. B 2006, 110, 9565.
- (4) Bae, Y.-S.; Yazaydın, A. Ö.; Snurr, R. Q. Langmuir 2010, 26, 5475.
- (5) Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. **1990**, *94*, 8897.