Support information for

Rationally molecular design: functional quinoline derivatives for PA detection, gaseous acid/base switching and anion-controlled

Yuqing Ma,^a Yuyang Zhang,^a Lin Kong^a, Jiaxiang Yang^{*a} ^aCollege of Chemistry & Chemical Engineering, Anhui University, Anhui Province Key Laboratory of chemistry for Inorganic/Organic Hybrid Functional Materials, Hefei 230601, P. R. China. jxyang@ahu.edu.cn

Fig. S1 (a) The UV-Vis spectra; (b) fluorescence spectra of G2 in different solvents and (c) Photographs of compound G2 dispersed in different solvents

Fig. S2 (a) The UV-vis spectra; (b) fluorescence spectra of G3 in different solvents and (c) Photographs of compound G3 dispersed in different solvents

Table S1 The UV-vis absorption data of G1-G3 in different solvents

		Benzene	DCM	THF	EtOH	ACN	DMF
G	$\lambda_{max}(nm)$	421	445	420	428	438	439
G ₁	$\epsilon_{max}(10^4)$	1.10	1.62	1.35	1.82	2.86	2.50
C	$\lambda_{max}(nm)$	421	446	419	434	430	428
G 2	$\epsilon_{max}(10^4)$	0.72	1.30	0.84	1.34	1.51	1.43

G	$\lambda_{max}(nm)$	455	460	447	452	457	457
G3	$\epsilon_{max}(10^4)$	2.74	3.70	2.96	3.88	3.38	3.41

Table S2 The fluorescent data of G1-G3 in different solvents

		Benzene	DCM	THF	EtOH	ACN	DMF
G ₁	$\lambda_{max}(nm)$	553	585	558	581	592	591
G ₂	$\lambda_{max}(nm)$	551	567	557	565	582	581
G3	$\lambda_{max}(nm)$	552	564	559	570	586	588

Table S3 The relative data of G1-G3 in different solvents

	Benzene	DCM	THF	EtOH	ACN	DMF
3	2.28	9.10	7.58	25.70	37.50	36.71
n	1.5011	1.4244	1.407	1.3614	1.3441	1.4282
$\Delta { m f}$	0.0029	0.2184	0.2671	0.2901	0.3054	0.2752

Table S4 The Stokes' shift of G1-G3 in different solvents

		Benzene	DCM	THF	EtOH	ACN	DMF
	λ_{abs}/nm	428	448	420	430	428	428
G ₁	λ_{em}/nm	553	585	558	581	592	591
	$\Delta v/cm^{-1}$	5281	5227	5888	6044	6472	6444
	λ_{abs}/nm	423	446	421	433	440	438
G ₂	λ_{em}/nm	551	567	557	565	582	581
	$\Delta v/cm^{-1}$	5492	4785	5800	5396	5545	5619
	λ_{abs}/nm	454	462	448	454	456	460
G3	λ_{em}/nm	552	564	559	570	586	588
	$\Delta v/cm^{-1}$	3910	3910	4432	4482	4864	4732

Fig. S3 (a) UV-vis absorption spectra of different nitroaromatic compounds; (b) UV-vis absorption spectra of different concentrations of PA in G1 solution; (c) The linear relationship between the fluorescence intensity and the PA concentration in G1 solution

Fig. S4 (a) UV-vis absorption spectra of different nitroaromatic compounds; (b) UV-vis absorption spectra of different concentrations of PA in G2 solution; (c) The linear relationship between the fluorescence intensity and the PA concentration in G2

solution

Fig. S5 (a) FL spectra obtained for different analytes (100 ppm); (b) Quenching percentage of compound **G2** (10 mM) with analytes (200 ppm) in CH₃OH/water (v/v = 90 : 10) mixtures before (black) and after (red) the addition of 100 ppm PA; (c) FL spectra of **G2** in CH₃OH/water (v/v = 90 : 10) containing different amounts of PA; (d) Corresponding Stern-Volmer plot of PA. Inset: Stern-Volmer plot obtained at lower concentration of PA

Fig. S6 (a) UV-vis absorption spectra of different nitroaromatic compounds; (B) FL spectra obtained for different analytes (300 ppm); (C) UV-vis absorption spectra of different concentrations of PA in **G3** solution; (D) FL spectra of **G3** in CH₃OH/water

(v/v = 90: 10) containing different amounts of PA

Fig. S7 UV-vis absorption spectra of PA; Normalized Fluorescence of G1 and G2

Fig. S8 (a) ¹H NMR spectra of G1 in CDCl₃; (b) ¹H NMR spectra of G2 in DMSO- d_{6} ; (A: G1/G2 samples, B: original sample + 3 equivalents PA; C: original sample + 5 equivalents PA.

Fig. S9 Frontier orbitals of compounds G1, G2 and G3

Fig. S10 HOMO and LUMO energy-level diagram of G1, G2 and PA

Fig. S11 Photographs of fluorescence quenching of G1 (a) and G2 (b) for detecting different concentrations of PA under 365 nm UV light. From left to right: blank, 5.0×10^{-2} , 1.0×10^{-2} , 5.0×10^{-3} , 1.0×10^{-3} , 5.0×10^{-4} , 1.0×10^{-4} , 5.0×10^{-5}

Fig. S12 Recycling of the fluorescence switching and color of G1-G3 in solid state

upon fuming with TFA and TEA vapors under daylight (left) and 365 nm lamp (right)

Fig. S13 The fluorescence spectra of G2 and G3 exposure to TFA and TEA vapors

Fig. S14 FT-IR spectra of compounds $G_{2a}\mathchar`-G_{2f}$ with different anions

Compounds	G2	G _{2a}	G _{2b}	G _{2c}	G _{2d}	G _{2e}	G_{2f}
-----------	----	-----------------	-----------------	-----------------	-----------------	-----------------	----------

Table S5 Emission wavelength of G2 and $G_{2a}\mathchar`-G_{2f}$

Emission	612	571	590	631	645	628	593
wavelengt (nm)							

lengths (Å)		angle	\$ (°)
Compound G _{2b}			
C(19)-C(20)	1.408(3)	C(11)-N(3)-C(19)	120.35(15)
C(18)-C(23)	1.402(3)	C(19)-N(3)-C(13)	118.73(15)
C(18)-C(19)	1.409(3)	C(7)-C(8)-C(9)	123.93(18)
C(17)-N(2)	1.336(2)	C(23)-C(18)-C(17)	122.21(18)
C(3)-N(1)	1.360(3)	N(2)-C(17)-C(18)	121.79(17)
N(3)-C(13)	1.485(2)	N(1)-C(3)-C(4)	122.25(18)
N(3)-C(19)	1.395(2)	N(3)-C(11)-C(10)	120.46(17)
N(3)-C(11)	1.371(2)	N(3)-C(19)-C(18)	120.65(17)
N(4)-O(2)	1.209(2)	O(2)-N(4)-O(1)	119.13(18)

Table S6 Selected bond lengths (Å) and angles (°) of compound $G_{2b},\,G_{2d}$ and G_{2f}

Zn(1)-N(5)1.936(3) $N(5)-Zn(1)-N(5)$ 109.3(2) $Zn(1)-N(4)$ 1.965(3) $N(5)-Zn(1)-N(4)$ 108.30(13) $S(1)-C(24)$ 1.612(4) $N(5)-Zn(1)-N(4)$ 110.67(14) $S(2)-C(25)$ 1.610(4) $C(9)-N(2)-C(1)$ 120.7(2) $N(2)-C(9)$ 1.368(3) $C(1)-N(2)-C(20)$ 118.6(2)
Zn(1)-N(4)1.965(3)N(5)-Zn(1)-N(4)108.30(13)S(1)-C(24)1.612(4)N(5)-Zn(1)-N(4)110.67(14)S(2)-C(25)1.610(4)C(9)-N(2)-C(1)120.7(2)N(2)-C(9)1.368(3)C(1)-N(2)-C(20)118.6(2)
S(1)-C(24)1.612(4)N(5)-Zn(1)-N(4)110.67(14)S(2)-C(25)1.610(4)C(9)-N(2)-C(1)120.7(2)N(2)-C(9)1.368(3)C(1)-N(2)-C(20)118.6(2)
S(2)-C(25)1.610(4)C(9)-N(2)-C(1)120.7(2)N(2)-C(9)1.368(3)C(1)-N(2)-C(20)118.6(2)
N(2)-C(9) 1.368(3) C(1)-N(2)-C(20) 118.6(2)
N(2)-C(20) 1.509(4) C(1)-C(6)-C(7) 118.7(3)
C(6)-C(1) 1.409(4) N(1)-C(7)-C(8) 121.4(3)
C(7)-N(1) 1.346(4) N(1)-C(7)-C(6) z
C(17)-C(16) 1.368(4) N(2)-C(1)-C(6) 120.0(3)
C(15)-C(14) 1.412(4) C(9)-C(8)-H(8) 117(2)
S(1)-C(24) 1.612(4) N(5)-Zn(1)-N(4) 110.67(14)
Compound G _{2f}
Hg(1)-S(3) 2.4364(18) S(3)-Hg(1)-S(2) 137.86(6)
Hg(1)-S(2) 2.4547(17) S(2)-Hg(1)-S(1) 111.83(6)
Hg(1)-S(1) 2.5297(19) S(3)-Hg(1)-N(4) 93.39(16)
Hg(1)-N(4) 2.563(6) S(1)-Hg(1)-N(4) 101.92(19)
S(2)-C(24) 1.648(8) C(26)-S(3)-Hg(1) 97.7(3)
S(3)-C(26) 1.643(9) N(4)-C(24)-S(2) 177.4(6)
N(6)-C(26) 1.130(10) C(9)-N(2)-C(20) 120.3(4)
N(2)-C(9)) 1.374(7) N(2)-C(9)-C(8) 120.2(5)
N(2)-C(20) 1.482(7) N(2)-C(4)-C(5) 120.9(5)

compounds	G_{2b}	G _{2d}	$\mathbf{G}_{\mathbf{2f}}$
empirical formula C	$C_{23}H_{28}N_4O_3$	$C_{50}H_{56}N_{10}S_4Zn$	$C_{26}H_{27}N_6S_3Hg$
formula weight	408.49	990.66	720.31
crystal system	Monoclinic	Monoclinic	Triclinic
space group	$P2_1/n$	C2/c	P-1
a [Å]	13.215(5)	20.941(5)	11.226(5)
b [Å]	10.327(5)	11.461(5)	11.535(5)
c [Å]	16.162(5)	22.337(5)	11.969(5)
α [°]	90.000(5)	90.000(5)	108.012(5)
β [°]	93.560(5)	107.490(5)	100.682(5)
γ [°]	90.000(5)	90.000(5)	90.099(5)
V [Å3]	2201.4(15)	5113(3)	1445.5(11)
Z	4	4	2
T [K]	296(2)	296(2)	296(2)
D calcd [g·cm ⁻³]	1.233	1.287	1.655
μ [mm ⁻¹]	0.083	0.688	5.566

Table S7 Crystal data collections and structure refinements of compounds $G_{2b},\,G_{2d}$ and G_{2f}

θ range [°]	2.34-24.84	2.34-20.32	2.33-23.02
total no. data	3870	4517	4711
no.unique data	2884	2736	3821
no.params refined	274	321	328
R_{I}	0.0471	0.0457	0.0308
wR_2	0.1356	0.1298	0.0834
Goodness-of-fit on F ²	1.001	0.999	0.997

Compound G _{2b}				
D–H…A	<i>d</i> (D–H)	<i>d</i> (H····A)	<i>d</i> (D····A)	∠DHA
C(7)–H(7)…N(4)	0.930	2.732	3.622	160.37
C(20)–H(20)····O(2)	0.930	2.622	3.454	149.22
C(15)–H(15B)····O(2)	0.970	2.557	3.407	146.40
C(13)–H(13B)····O(2)	0.970	2.455	3.296	144.90
C(13)–H(13B)····O(3)	0.970	2.692	3.611	158.29
N(2)–H(2B)…O(1)	0.860	2.054	2.831	149.83
C(9)–H(9)…O(3)	0.930	2.709	3.600	160.86
N(2)–H(2A)…O(1)	0.860	2.068	2.894	160.
C(23)–H(23)····O(2)	0.930	2.556	3.410	152.81
Compound G_{2d}				
D–H…A	<i>d</i> (D–H)	<i>d</i> (H···A)	<i>d</i> (D···A)	∠DHA
C(5)–H(5)…N(1)	0.883	2.589	2.886	100.69
N(1)–H(1A)···N(4)	0.860	2.558	3.372	158.35
N(1)–H(1B)…S(2)	0.860	2.889	3.733	167.42
C(5)–H(5)···S(2)	0.883	2.923	3.738	154.27
C(3)–H(3)…N(4)	0.966	2.743	3.667	160.25
Compound G _{2f}				
D–H…A	<i>d</i> (D–H)	<i>d</i> (H···A)	$d(D \cdots A)$	∠DHA
C(5)–H(5)…N(4)	0.930	2.878	3.555	130.67
C(2)–H(2)···N(1)	0.930	2.613	2.902	98.61
N(1)–H(1A)····N(6)	0.860	2.428	3.238	157.25
N(1)–H(1B)····N(5)	0.860	2.132	2.969	164.25

Table S8 Hydrogen bond lengths (Å) and bond angles (°) of compounds $G_{2b},\,G_{2d}$ and $$G_{2f}$$

C(2)–H(2)····N(5)	0.930	2.559	3.475	168.59
C(19)-H(19A)N(1)	0.960	2.657	3.537	152.61

Fig. S15 Molecular arrangement of $G_{2b}\left(a\right);\,G_{2d}\left(b\right)$ and $G_{2f}(c).$

Fig. S16 ¹H NMR spectrum (400 MHz) of G1 in DMSO- d_6

Fig. S18 ESI-MS spectrum of G1

Fig. S19 ¹H NMR spectrum (400 MHz) of G2 in DMSO- d_6

Fig. S20¹³C NMR spectrum (100 MHz) of G1 DMSO-d₆

Fig. S21 ESI-MS spectrum of G2

Fig. S22 ¹H NMR spectrum (400 MHz) of G3 in CDCl₃

Fig. S23 ¹³C NMR spectrum (100 MHz) of G3 in CDCl₃

Fig. S24 ESI-MS spectrum of G3