Crystallographic studies of 2-picolyl substituted naphthalene diimide and bis-phthalimide ligands and their supramolecular coordination chemistry

June I. Lovitt,^a Chris S. Hawes,^b*and Thorfinnur Gunnlaugsson^{a*}

^a School of Chemistry and Trinity Biomedical Science Institute, University of Dublin, Trinity College Dublin, Dublin 2 (Ireland)

^b School of Chemical and Physical Sciences, Keele University, Keele ST5 5BG, United Kingdom

Supporting Information

1.	X-Ray Powder Diffraction Patterns	2
2.	Thermogravimetric Analysis	7
3.	Spectroscopic Data	11
4.	NMR Spectra	12
5.	Hydrogen Bonding Parameters, Additional Crystallographic Figures, and Ellipsoid Plots	14

1. X-Ray Powder Diffraction Patterns

Figure S1: X-ray powder diffraction pattern for **L2** collected at 298 K compared to the calculated pattern from the single crystal dataset at 100 K.

Figure S2: X-ray powder diffraction pattern for compound **1** at 298 K compared to the calculated pattern from the single crystal dataset (100 K).

Figure S3: X-ray powder diffraction pattern for compound **2** at 298 K compared to the calculated pattern from the single crystal dataset at 100 K.

Figure S4: X-ray powder diffraction for compound **3** at 298 K compared to the calculated pattern from the single crystal dataset 100 K.

Figure S5: X-ray powder diffraction pattern for compound **4** at 298 K compared to the calculated pattern from the single crystal dataset at 100 K.

Figure S6: X-ray powder diffraction pattern for compound **5** at 298 K compared to the calculated pattern from the single crystal dataset at 100 K.

Figure S7: X-ray powder diffraction pattern for **L2** under analogous conditions to compound **1** formation at 298 K compared to the calculated pattern from the single crystal dataset of **L2** at 100 K.

Figure S8: X-ray powder diffraction pattern for **L2** under analogous conditions to compound **2** formation at 298 K compared to the calculated pattern from the single crystal dataset of **L2** at 100 K.

Figure S9: X-ray powder diffraction pattern for **L2** under analogous conditions to compound **3** formation at 298 K compared to the calculated pattern from the single crystal dataset of **L2** at 100 K.

2. Thermogravimetric Analysis

Figure S10: Thermogravimetric analysis for L1.

Figure S11: Thermogravimetric analysis for L2.

Figure S12: Thermogravimetric analysis for compound 1.

Figure S13: Thermogravimetric analysis for compound 1 after desolvation and rehydration in air.

Figure S14: Thermogravimetric analysis for compound 2.

Figure S15: Thermogravimetric analysis for compound 2 after desolvation and rehydration in air.

Figure S16: Thermogravimetric analysis for compound 3.

Figure S17: Thermogravimetric analysis for compound 4.

3. Spectroscopic Data

Figure S18: UV absorption spectra of L1 and L2 (MeCN) at 2x10⁻⁵M concentration.

Figure S19: ¹H NMR titration (d_3 -MeCN) of the addition of $ZnCl_2$ to L2. Each addition represents 0.2 equivalents of $ZnCl_2$.

4. NMR Spectra

Figure S21: ¹³C spectra for L1.

5. Hydrogen Bonding Parameters, Additional Crystallographic Figures, and Ellipsoid Plots

Compound	D	Н	Α	d(D-H) (Å)	D(H-A) (Å)	D(D-A) (Å)	<dha (°)<="" th=""></dha>
3	N1	H1	05	0.88	2.06	2.940(5)	177
	N4	H4	05	0.88	2.13	2.982(4)	161.4
	O7	H7A	C13	0.87	2.19	3.030(7)	163.1
	O5	H5A	Cl2	0.87	2.41	3.170(3)	146.4
	06	H6D	05	0.87	2.28	3.033(7)	144.3
4	N1	H1	C11	1.15(9)	1.86(9)	2.993(9)	166(7)

Table S1: Geometrical Parameters for classical hydrogen bonds in compounds 3 and 4

Figure S24 Ellipsoid plot for the asymmetric unit of compound **L2** with heteroatom labelling scheme. Ellipsoids rendered at 50% probability level.

Figure S25 Ellipsoid plot for the asymmetric unit of compound 1 with heteroatom labelling scheme. Ellipsoids rendered at 50% probability level.

Figure S26 Ellipsoid plot for the asymmetric unit of compound 2 with heteroatom labelling scheme. Ellipsoids rendered at 50% probability level.

Figure S27 Ellipsoid plot for the asymmetric unit of compound 3 with heteroatom labelling scheme. Ellipsoids rendered at 50% probability level.

Figure S28 Ellipsoid plot for the asymmetric unit of compound 4 with heteroatom labelling scheme. Ellipsoids rendered at 50% probability level.

Figure S29 Ellipsoid plot for the asymmetric unit of compound 5 with heteroatom labelling scheme. Ellipsoids rendered at 50% probability level.

Figure S30 Hydrogen bonding interactions in the structure of **3**, showing the predominant interaction modes involving the lattice water molecules, tetrachlorozincate and pyridinium groups (ligand backbone omitted). Major disordered contributors for lattice water molecules are shown only.