Electronic Supplementary Material (ESI) for CrystEngComm.

This journal is © The Royal Society of Chemistry 2018

# **Supporting Information**

Solvent controlled self-assembly of  $\pi$ -stacked/H-bonded supramolecular organic frameworks from a  $C_3$ -symmetric monomer

## for iodine adsorption

Yangxue Li,\*a Haiyang Yu,a Feifan Xu,a Qiaoyuan Guo,a Zhigang Xie c and Zhiyong Sun\*b,c

<sup>a</sup>-Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, 2519 Jiefangda Road, Changchun 130021, P. R. China.

<sup>b</sup>Institute for Microbiology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.

<sup>c</sup> State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.

Contents

- 1. Synthesis
- 2. PXRD patterns
- 3. TGA curves
- 4. FT-IR spectra
- 5.  $N_2$  adsorption isotherm and pore size distribution
- 6. Crystallographic data and hydrogen bond data
- 7. Iodine adsorption experiments
- 8. Solubility Table
- 9. Reference

### 1. Synthesis



Scheme S1 General synthetic routes.

**1.1** Synthesis of trimethyl benzene-1,3,5-tricarboxylate (2)

1 (2 g) and TsOH (100 mg) were added into 200 ml CH<sub>3</sub>OH, then heated to reflux for 48 h under N<sub>2</sub> atmosphere. Last, the reaction was quenched with a saturated aqueous NaHCO<sub>3</sub> solution and the resulting mixture was extracted with diethylether.<sup>[1]</sup> The organic layer was washed with water and brine, then dried over Na<sub>2</sub>SO<sub>4</sub>. After that, the solvent were evaporated in vacuo, yielding **2** (2 g) as a white powder. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.86 (d, *J* = 1.5 Hz, 1H), 3.98 (s, 3H).



**Fig. S1** <sup>1</sup>H NMR spectrum of trimethyl benzene-1,3,5-tricarboxylate (2). Synthesis of benzene-1,3,5-tricarbohydrazide (3)

Hydrazine monohydrate (5 ml) was added in portions to a solution of **2** (1 g) in methanol. The mixture was stirred for 48 h under reflux, then filtered and washed with methanol, yielding **3** as a white powder. <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  9.83 (s, 1H), 8.32 (s, 1H), 4.58 (s, 2H).

1.2



Fig. S2 <sup>1</sup>H NMR spectrum of benzene-1,3,5-tricarbohydrazide (3).

1.3 Synthesis of N1',N3',N5'-tris((pyridin-4-yl)methylene)benzene-1,3,5-tricarbohydrazide (4)

**3** (502 mg) and 4-pyridine aldehyde (800 mg) were dispersed in 100 ml methanol, , then the mixture was stirred at boiling temperature for 12 h. Afterwards, filtered and washed with methanol, yielding **4** as a flavescent powder.<sup>[2]</sup> <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>)  $\delta$  12.47 (s, 1H), 8.70 (s, 2H), 8.51 (s, 1H), 7.72 (s, 2H). <sup>13</sup>C NMR (400 MHz, DMSO-d<sub>6</sub>, ppm): 121.09, 133.87, 141.32, 146.37, 150.31,162.33 ppm.



**Fig. S3** <sup>1</sup>H NMR spectrum of N1',N3',N5'-tris((pyridin-4-yl)methylene)benzene-1,3,5-tricarbohydrazide (**4**).



1,3,5-tricarbohydrazide (4).

## 2. PXRD patterns



Fig. S5 Simulated and synthesized PXRD patterns of JLUE-SOF-1-DEF.



Fig. S6 Simulated and synthesized PXRD patterns of JLUE-SOF-2-DMF.



Fig. S7 Simulated and synthesized PXRD patterns of JLUE-SOF-3-DMSO.

# 3. TGA curves



Fig. S8 TGA curve of JLUE-SOF-1-DEF.



Fig. S9 TGA curve of JLUE-SOF-2-DMF.



Fig. S10 TGA curve of JLUE-SOF-3-DMSO.

## 4. FT-IR spectra



**Fig. S11** FT-IR spectra of the TPBTCH monomer, JLUE-SOF-1-DEF, JLUE-SOF-2-DMF and JLUE-SOF-3-DMSO.

## 5. N<sub>2</sub> adsorption isotherms and pore size distribution



Fig. S12 Nitrogen adsorption and desorption isotherms of JLUE-SOF-3-DMSO measured at 77 K.



Fig. S13 Pore size distribution of JLUE-SOF-3-DMSO.

# 6. Crystallographic Data and Hydrogen Bond Data.

| Compound                                         | JLUE-SOF-1-DEF                                                                                  | JLUE-SOF-2-DMF                                                                  | JLUE-SOF-3-DMSO                                                                                 |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Formula                                          | C <sub>27</sub> H <sub>21</sub> N <sub>9</sub> O <sub>3</sub> (C <sub>5</sub> NO <sub>4</sub> ) | C <sub>27</sub> H <sub>21</sub> N <sub>9</sub> O <sub>3</sub> (O <sub>4</sub> ) | C <sub>27</sub> H <sub>21</sub> N <sub>9</sub> O <sub>3</sub> (C <sub>6</sub> O <sub>5</sub> S) |
| F.w.                                             | 657.59                                                                                          | 583.53                                                                          | 703.65                                                                                          |
| T (K)                                            | 293(2)                                                                                          | 293(2)                                                                          | 293(2)                                                                                          |
| Crystal system                                   | Triclinic                                                                                       | Triclinic                                                                       | Triclinic                                                                                       |
| Space group                                      | P-1                                                                                             | P-1                                                                             | P-1                                                                                             |
| a (Å)                                            | 10.1382(11)                                                                                     | 7.4872(6)                                                                       | 11.9851(17)                                                                                     |
| <i>b</i> (Å)                                     | 12.7716(14)                                                                                     | 12.4001(10)                                                                     | 12.2632(17)                                                                                     |
| c (Å)                                            | 13.5128(4)                                                                                      | 17.0797(13)                                                                     | 13.7369(19)                                                                                     |
| a (°)                                            | 79.967(2)                                                                                       | 109.166(2)                                                                      | 94.016(2)                                                                                       |
| β(°)                                             | 89.142(2)                                                                                       | 99.619(2)                                                                       | 112.728(2)                                                                                      |
| γ (°)                                            | 76.356(2)                                                                                       | 93.273(2)                                                                       | 103.896(2)                                                                                      |
| V (Å <sup>3</sup> )                              | 1673.7(3)                                                                                       | 1466.1(2)                                                                       | 1777.6(4)                                                                                       |
| Z                                                | 2                                                                                               | 2                                                                               | 2                                                                                               |
| Dc (g/cm <sup>3</sup> )                          | 1.305                                                                                           | 1.322                                                                           | 1.315                                                                                           |
| μ (mm <sup>-1</sup> )                            | 0.096                                                                                           | 0.099                                                                           | 0.153                                                                                           |
| Data collected/uniq. ( <i>R</i> <sub>int</sub> ) | 8458 / 4783 (0.0239)                                                                            | 8084 / 5692 (0.0626)                                                            | 8773 / 6144 (0.0310)                                                                            |

 Table S1 Crystal data and structure refinement for JLUE-SOFs.

| $R^a, R_w^{b} [I > 2\sigma(I)]$ | 0.0719, 0.2265 | 0.0654, 0.2061 | 0.0889, 0.2729 |
|---------------------------------|----------------|----------------|----------------|
| GOF                             | 1.086          | 1.033          | 1.057          |

<sup>*a*</sup> R= $\Sigma |F_o| - |F_c| / \Sigma |F_o; {}^{b} R_w = [\Sigma_w (F_o^2 - F_c^2)^2 / \Sigma_w (F_o^2)^2]^{1/2}.$ 

| Table S2 Hydrog | en Bond Data | for JLUE-SOF-2- | DMF.       |        |
|-----------------|--------------|-----------------|------------|--------|
| D-HA            | d(D-H)       | d(HA)           | d(DA)      | <(DHA) |
| N(7)-H(7)O(2)#1 | 0.86         | 2.02            | 2.8320(16) | 157.0  |
|                 |              |                 |            |        |

Symmetry codes: #1 -x+1,-y+1,-z+2.

| <b>Table S3</b> Hydrogen Bond Data for JLUE-SOF-3- |
|----------------------------------------------------|
|----------------------------------------------------|

| D-HA             | d(D-H) | d(HA) | d(DA)      | <(DHA) |
|------------------|--------|-------|------------|--------|
| N(4)-H(4A)N(9)#1 | 0.86   | 2.21  | 3.022(2)   | 157.0  |
| N(7)-H(7)O(2)#2  | 0.86   | 2.06  | 2.8990(17) | 164.8  |

Symmetry codes: #1 -x+1,-y+2,-z+1; #2 -x+1,-y+1,-z+1.

### 7. Iodine adsorption experiments

The adsorption related fundamental functions 1 and 2 were as shown below <sup>[3]</sup>:

$$q_e = \frac{\left(C_0 - C_e\right)V}{m} \tag{1}$$

$$E(\%) = \frac{C_0 - C_e}{C_0} \times 100\%$$
 (2)

where  $q_e$  (mg/g) represents the adsorbed amount of iodine,  $C_0$  (mg/L) represents the initial iodine concentration,  $C_e$  (mg/L) represents the final equilibrium iodine concentration, m (g) represents the quantity of JLUE-SOF-3-DMSO used, V (L) represents the volume of hexane treated, E (%) represents the removal efficiency for iodine by JLUE-SOF-3-DMSO.

#### 7.1 Adsorption dynamics analysis

The experimental data for JLUE-SOF-3-DMSO towards iodine adsorption were processed by pseudo-first-order kinetic model, pseudo-second-order kinetic model and intraparticle diffusion model according to the following functions <sup>[4]</sup>:

$$\ln\left(q_e - q_t\right) = \ln q_e - k_1 t \tag{3}$$

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(4)

$$q_t = k_i t^{1/2} + C (5)$$

where  $q_t$  (mg/g) and  $q_e$  (mg/g) represent the adsorbed iodine amounts at regular intervals and equilibrium time, respectively;  $k_1$  (1/h) and  $k_2$  ((g/mg/h) represent the pseudo-first-order kinetic rate constant and the pseudo-second-order kinetic rate constant, respectively;  $k_i$  (mg/g/h<sup>1/2</sup>) represents the intraparticle diffusion rate constant, and *C* (mg/g) represents the intercept.

#### 7.2 Adsorption isotherms analysis

In order to understand the adsorption mechanism of iodine by the JLUE-SOF-3-DMSO, the two most familiar adsorption isothermal models, i.e., Langmuir isotherm and Freundlich isotherm, corresponding with monolayer adsorption process and multilayer adsorption process, respectively, were adopted to analyze the isothermal curves<sup>[1]</sup>:

$$\frac{C_e}{q_e} = \frac{1}{K_L} + \frac{a_L C_e}{K_L} \tag{6}$$

$$\ln q_e = \ln K_F + \frac{1}{n} \ln C_e \tag{7}$$

Where  $q_e \text{ (mg/g)}$  and  $C_e \text{ (mg/L)}$  represent the same meaning as above,  $K_L \text{ (L/g)}$  and  $a_L \text{ (L/mg)}$  represent the Langmuir adsorption isotherm constants,  $K_F$  and n represent the Freundlich adsorption isotherm constants.

Additionally, known as the unit-less equilibrium parameter, the values of separation factor " $R_L$ " can be used to predict the shape of the adsorption isotherm using the following equation<sup>[5]</sup>:

$$R_L = \frac{1}{1 + a_L C_0} \tag{8}$$

Where  $C_0$  (mg/L) and  $a_L$  (L/mg) represent the initial iodine concentration and the Langmuir binding constant. Accordingly,  $R_L > 1$  (unfavourable),  $R_L = 1$  (linear),  $0 < R_L < 1$  (favourable) or  $R_L = 0$  (irreversible).

|        | ~                            | Removal           | Pseudo                  | o-first order l               | kinetics       | Pseudo-second order kinetics |                               |                |
|--------|------------------------------|-------------------|-------------------------|-------------------------------|----------------|------------------------------|-------------------------------|----------------|
| (mg/L) | q <sub>e,exp</sub><br>(mg/g) | Efficiency<br>(%) | k <sub>1</sub><br>(1/h) | q <sub>e1,cal</sub><br>(mg/g) | R <sup>2</sup> | k <sub>2</sub><br>(g/mg/h)   | q <sub>e2,cal</sub><br>(mg/g) | R <sup>2</sup> |
| 75     | 74.9                         | 99.8              | 0.359                   | 48.4                          | 0.95           | 0.006                        | 89.3                          | 0.99           |
| 100    | 89.4                         | 89.4              | 0.296                   | 76.7                          | 0.98           | 0.005                        | 103.0                         | 0.99           |
| 125    | 111.1                        | 88.8              | 0.199                   | 99.5                          | 0.98           | 0.003                        | 124.8                         | 0.99           |
| 150    | 131.4                        | 87.6              | 0.157                   | 116.7                         | 0.98           | 0.002                        | 138.1                         | 0.99           |

Table S4 Kinetic parameters of iodine adsorption by JLUE-SOF-3-DMSO.

**Table S5** Intraparticle diffusion model parameters for the adsorption of iodine byJLUE-SOF-3-DMSO.

| C      |                                              | Intraparticle diffusion model |                |                                              |                          |                |
|--------|----------------------------------------------|-------------------------------|----------------|----------------------------------------------|--------------------------|----------------|
| (mg/L) | k <sub>i,1</sub><br>(mg/g/h <sup>1/2</sup> ) | C <sub>1</sub><br>(mg/g)      | R <sup>2</sup> | k <sub>i,2</sub><br>(mg/g/h <sup>1/2</sup> ) | C <sub>2</sub><br>(mg/g) | R <sup>2</sup> |
| 75     | 24.3                                         | 9.6                           | 0.96           | 0.5                                          | 72.1                     | 0.93           |
| 100    | 27.9                                         | 8.8                           | 0.98           | 2.30                                         | 78.3                     | 0.90           |
| 125    | 33.9                                         | 3.7                           | 0.99           | 5.6                                          | 81.5                     | 0.83           |
| 150    | 36.3                                         | 3.6                           | 0.99           | 8.8                                          | 82.3                     | 0.98           |

|                        | Temperature<br>(K) | Qm  | K <sub>F</sub> | K <sub>L</sub> | 1/n  | R <sub>L</sub> | R <sup>2</sup> |
|------------------------|--------------------|-----|----------------|----------------|------|----------------|----------------|
| Langmuir<br>isotherm   | 298                | 207 |                | 28.6           |      | 0.028~0.134    | 0.99           |
| Freundlich<br>isotherm | 298                |     | 50.2           |                | 0.31 |                | 0.95           |

**Table S6** Langmuir and Freundlich isotherm parameters for iodine adsorption byJLUE-SOF-3-DMSO.

 Table S7 Iodine adsorption properties of porous materials.

| No. | Adsorbent       | Temperature | S <sub>BET</sub>    | Equilibrium Time | Adsorption Capacity | References |
|-----|-----------------|-------------|---------------------|------------------|---------------------|------------|
|     |                 | [°C]        | [m <sup>2</sup> /g] | [h]              | [mg/g]              |            |
| 1.  | JLUE-SOF-3-DMSO | 25          | 81                  | 8                | 207                 | This work  |
| 2.  | <b>UiO-66</b>   | 25          | 1015                | 24               | 401                 | [6]        |
| 3.  | pha-COP-1       | 25          | 217                 | 120              | 833                 | [7]        |
| 4.  | UiO-66-PYDC     | 25          | 1030                | 24               | 1250                | [6]        |

## 8. Solubility Table

 Table S8 Solubility of TPBTCH monomer in different solvents.

| No. | Solvent | Temperature | Solubility |
|-----|---------|-------------|------------|
|     |         | [°C]        | [mg/mL]    |
| 1.  | DEF     | 25          | 10         |
| 2.  | DMF     | 25          | 20         |
| 3.  | DMSO    | 25          | 50         |

## 9. Reference

- J. Dong, F. F. Xu, Z. J. Dong, Y. S. Zhao, Y. Yan, H. Jin and Y. X. Li, *RSC Adv.*, 2018, 8, 19075–19084.
- [2] C. He, Z. Lin, Z. He, C. Duan, C. Xu, Z. Wang and C. Yan, Angew. Chem. Int. Ed., 2008, 47, 877–881.
- [3] L. Merí-Bofí, S. Royuela, F. Zamora, M. L. Ruiz-González, J. L. Segura, R.
   Muňoz-Olivas and M. J. Mancheňo, *J. Mater. Chem. A*, 2017, 5, 17973–17981.
- [4] R. Wen, Y. Li, M. C. Zhang, X. H. Guo, X. Li, X. F. Li, J. Han, S. Hu, W. Tan, L. J. Ma and S. J. Li, *J. Hazard. Mater.*, 2018, 358, 273–285.
- [5] D. D. Lu, Q. L. Cao, X. J. Cao and F. Luo, *J. Hazard. Mater.*, 2009, 166, 239–247.
- [6] Z. Wang, Y. Huang, J. Yang, Y. S. Li, Q. X. Zhuang and J. L. Gu, *Dalton Trans.*, 2017, 46, 7412–7420.
- [7] L. Lin, H. D. Guan, D. L. Zou, Z. J. Dong, Z. Liu, F. F. Xu, Z. G. Xie and Y. X. Li, *RSC Adv.*, 2017, 7, 54407–54415.