Supporting Information

Alkali Metal Salts of 3,6-Dinitramino- 1,2,4,5-tetrazine: Promising

Nitrogen-Rich Energetic Materials

Tianhe Zhang, Jiang Du, Zhimin Li, Xinyu Lin, Li Yang and Tonglai Zhang*

State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology,

Beijing 100081, China

E-mail: ztlbit@bit.edu.cn

Contents

Table S1-Table S34 Crystal data and structure refinement details for the six compounds

Figure S1-Figure S12 Molecular structure and packing diagram of the six compounds

Figure S13-Figure S18 DSC curve of the six compounds

Figure S19-Figure S24 TG-DTG curve of the six compounds

Table S35 The first exothermic decomposition peak temperatures tested at different heating rates of the six compounds

Table S36 Results of 5 s bursting point tests

Table S37 CCDC number of the six compounds

Parameters (A^{-} 10 ⁻) for 1. O_{eq} is defined as 1/5 of the frace of the offolgonalised O_{IJ} tensor.									
Atom	x	У	Z	U(eq.)					
01	7339(2)	-1468(2)	7370.0(18)	28.7(5)					
O2	5456.8(19)	93(2)	7022(2)	32.1(5)					
N1	6653(2)	-399(3)	6729(2)	22.4(5)					
N2	7242(2)	325(3)	5536(2)	19.6(5)					
N3	9429.0(19)	1586(2)	5164.9(19)	16.9(5)					
N4	10798(2)	1436(2)	4870.8(19)	17.7(5)					
C1	8695(2)	140(3)	5292(2)	16.2(5)					
O2 N1 N2 N3 N4 C1	5456.8(19) 6653(2) 7242(2) 9429.0(19) 10798(2) 8695(2)	93(2) -399(3) 325(3) 1586(2) 1436(2) 140(3)	7022(2) 6729(2) 5536(2) 5164.9(19) 4870.8(19) 5292(2)	32.1(5) 22.4(5) 19.6(5) 16.9(5) 17.7(5) 16.2(5)					

Table S1 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **1**. U_{ea} is defined as 1/3 of the trace of the orthogonalised U_{II} tensor.

Table S2 Anisotropic Displacement Parameters ($Å^{2} \times 10^{3}$) for **1**. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

	1			-		
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	30(1)	32.4(10)	23.8(9)	5.9(7)	0.4(7)	2.4(8)
02	21.2(10)	37.8(11)	37.3(11)	0.5(8)	12.1(8)	3.9(8)
N1	20.9(11)	24.2(11)	22.1(9)	-2.4(8)	3.1(8)	-1.5(9)
N2	14.8(10)	18.4(10)	25.5(10)	4.1(8)	4.2(7)	2.0(8)
N3	14.0(9)	17.2(10)	19.5(9)	0.9(7)	1.7(7)	-1.2(7)
N4	15.5(9)	17.5(10)	20.0(9)	-0.6(7)	1.9(7)	0.2(8)
C1	16.8(11)	15.5(11)	16.5(10)	0.1(8)	-1.0(8)	0.6(9)

Table S3 Bond Lengths for 1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	N1	1.222(3)	N3	N4	1.323(3)
O2	N1	1.221(3)	N3	C1	1.337(3)
N1	N2	1.382(3)	N4	C11	1.337(3)
N2	C1	1.393(3)	C1	N4 ¹	1.337(3)

¹2-X,-Y,1-Z

Table S4 Bond Angles for 1.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	N1	N2	118.59(19)	N3	N4	C11	117.02(19)
02	N1	01	126.3(2)	N3	C1	N2	115.60(19)
02	N1	N2	115.1(2)	N3	C1	N41	126.5(2)
N1	N2	C1	119.07(18)	N41	C1	N2	117.7(2)
N4	N3	C1	116.43(19)				

¹2-X,-Y,1-Z

				8					
Α	B	С	D	Angle/°	Α	B	С	D	Angle/°
01	N1	N2	C1	-15.4(3)	N4	N3	C1	N2	-177.10(18)
02	N1	N2	C1	165.9(2)	N4	N3	C1	N41	-1.1(3)
N1	N2	C1	N3	-122.3(2)	C1	N3	N4	$C1^1$	1.0(3)
N1	N2	C1	N41	61.3(3)					

Table S5 Torsion Angles for 1.

¹2-X,-Y,1-Z

Table S6 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **1**.

Atom	x	У	Z	U(eq)
H2	6902	1316	5424	23

Table S7 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **2**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq.)
01	6013.9(13)	6996.9(5)	496.6(7)	16.4(2)
02	3836.0(13)	5990.6(5)	1062.3(7)	16.6(2)
O3	957.0(13)	4117.7(5)	413.0(7)	15.42(19)
O4	2230.5(12)	4904.9(5)	3134.6(7)	14.42(19)
N1	801.9(15)	8192.4(6)	2205.9(8)	11.9(2)
N2	772.7(14)	6588.0(6)	2159.1(7)	11.2(2)
N3	3310.5(14)	7514.5(6)	1288.5(7)	11.4(2)
N4	4362.9(14)	6806.5(6)	953.1(8)	10.60(19)
C1	1593.2(16)	7378.1(7)	1884.0(8)	9.6(2)
Li1	854(3)	5282.2(13)	1338.2(17)	17.6(4)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	12.8(4)	18.0(4)	21.2(4)	1.9(3)	10.1(3)	0.5(3)
O2	16.7(4)	9.0(4)	26.2(4)	0.6(3)	9.6(3)	0.8(3)
O3	16.5(4)	11.9(4)	19.3(4)	-0.9(3)	7.1(3)	1.9(3)
O4	13.4(4)	9.3(4)	20.7(4)	-0.5(3)	3.5(3)	0.5(3)
N1	14.3(4)	10.0(4)	12.1(4)	-0.2(3)	4.6(3)	0.0(3)
N2	12.4(4)	10.3(4)	12.2(4)	0.6(3)	5.4(3)	-0.1(3)
N3	12.2(4)	10.1(4)	12.7(4)	0.1(3)	4.5(3)	0.7(3)
N4	9.4(4)	12.3(4)	10.2(4)	1.5(3)	2.2(3)	1.0(3)
C1	10.8(5)	9.8(5)	7.8(4)	0.2(3)	0.5(3)	0.3(3)
Li1	19.9(9)	14.6(8)	19.5(9)	-2.1(7)	6.7(7)	1.3(7)

Table S8 Anisotropic Displacement Parameters (Å²×10³) for **2**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

 Table S9 Bond Lengths for 2.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	N4	1.2550(12)	N2	N2 ²	1.3352(16)
02	N4	1.2601(11)	N2	C1	1.3318(13)
02	Lil	2.182(2)	N2	Li1	2.151(2)
O3	Li1 ¹	2.287(2)	N3	N4	1.3230(12)
03	Lil	2.028(2)	N3	C1	1.3719(13)
04	Lil	2.150(2)	Lil	O31	2.287(2)
04	Li1 ²	2.164(2)	Lil	O4 ²	2.164(2)
N1	N1 ²	1.2913(17)	Lil	Li1 ²	3.035(4)
N1	C1	1.3729(13)	Lil	Li1 ¹	3.165(4)

¹-X,1-Y,-Z; ²-X,+Y,1/2-Z

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N4	02	Li1	135.29(8)	03	Li1	N2	174.27(11)
Li1	O3	Li1 ¹	94.18(8)	O3	Lil	Li1 ¹	46.10(5)
Li1	O4	Li1 ²	89.41(8)	O31	Lil	Li1 ¹	39.71(5)
N1 ²	N1	C1	118.78(6)	O31	Lil	Li1 ²	125.38(10)
N2 ²	N2	Lil	109.37(6)	O3	Li1	Li1 ²	120.50(6)
C1	N2	$N2^2$	118.60(6)	O4 ²	Lil	02	164.75(10)
C1	N2	Lil	129.98(9)	O4	Li1	02	94.00(8)
N4	N3	C1	119.29(8)	O4	Lil	O3 ¹	169.38(10)
01	N4	02	119.84(8)	O4 ²	Li1	O31	92.01(8)
01	N4	N3	114.76(8)	O4	Lil	O4 ²	82.92(8)
O2	N4	N3	125.41(9)	O4	Li1	N2	81.40(7)
N2	C1	N1	122.44(9)	O4	Lil	Li1 ¹	149.47(12)
N2	C1	N3	127.24(9)	O4 ²	Li1	Li1 ²	45.12(6)
N3	C1	N1	110.31(8)	O4 ²	Li1	Li1 ¹	92.93(9)
O2	Li1	O31	88.45(8)	O4	Lil	Li1 ²	45.47(6)
O2	Li1	Li1 ¹	97.11(9)	N2	Li1	02	73.76(7)
O2	Li1	Li1 ²	124.13(10)	N2	Lil	O31	89.40(7)
O3	Li1	02	102.93(9)	N2	Li1	O4 ²	91.00(8)
O3	Li1	O31	85.82(8)	N2	Li1	Li1 ¹	129.04(11)
O3	Li1	O4 ²	92.31(8)	N2	Li1	Li1 ²	64.97(6)
O3	Li1	O4	103.65(9)	Li1 ²	Li1	Li1 ¹	138.03(13)

 Table S10 Bond Angles for 2.

¹-X,1-Y,-Z; ²-X,+Y,1/2-Z

Table S11 Torsion Angles for 2.

A	В	С	D	Angle/°	Α	В	С	D	Angle/°
N11	N1	C1	N2	-0.22(17)	C1	N3	N4	01	-174.78(8)
$N1^1$	N1	C1	N3	-178.89(11)	C1	N3	N4	02	5.02(15)
$N2^1$	N2	C1	N1	-4.62(17)	Li1	02	N4	01	-161.26(10)
N21	N2	C1	N3	173.82(10)	Li1	02	N4	N3	18.95(17)
N4	N3	C1	N1	176.86(8)	Li1	N2	C1	N1	157.26(10)
N4	N3	C1	N2	-1.73(15)	Li1	N2	C1	N3	-24.31(17)

¹-X,+Y,1/2-Z

101 2.				
Atom	x	У	Z	U(eq.)
H3A	2082	3854	258	19
H3B	234	3706	675	19
H4A	2663	4372	3063	17
H4B	3343	5232	3370	17

Table S12 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **2**.

Table S13 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **3**. U_{eq.} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq.)
03	2543(3)	4477.5(13)	7176(4)	21.0(4)
04	1595(3)	5706.7(13)	8615(4)	18.8(4)
01	0	4165.2(19)	0	18.1(5)
Nal	2714.3(13)	3313.7(6)	4132.0(18)	16.4(3)
02	5912(3)	2924.5(14)	8199(3)	19.2(4)
N1	2360(3)	5444.2(15)	7484(4)	13.5(4)
N2	2905(3)	6258.0(15)	6752(4)	14.6(4)
N3	4476(3)	7040.6(17)	5406(4)	16.8(4)
N4	4433(3)	5124.8(16)	5373(4)	15.8(4)
C1	3946(3)	6071.6(17)	5801(5)	13.0(5)

Table S14 Anisotropic Displacement Parameters (Å²×10³) for **3**. The Anisotropic displacementfactor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
03	33.3(10)	10.5(8)	30.5(10)	0.2(8)	25.5(8)	1.2(8)
O4	25.3(9)	17.8(9)	25.6(9)	1.2(7)	22.0(8)	1.5(7)
01	19.0(12)	17.5(12)	21.8(12)	0	14.9(10)	0
Na1	19.3(5)	12.5(5)	20.3(5)	0.3(4)	13.9(4)	-0.6(3)
02	25.1(9)	14.1(8)	18.6(8)	1.9(7)	13.8(8)	3.9(7)
N1	13.5(10)	13.9(10)	13.1(9)	0.3(8)	8.4(8)	0.5(8)
N2	17.6(10)	11.7(10)	20.3(10)	1.8(8)	14.6(9)	1.0(8)
N3	21.8(10)	12.0(11)	23.7(10)	-0.1(8)	17.8(9)	0.0(8)
N4	17.1(10)	13.7(10)	22.3(11)	0.8(8)	15.3(9)	0.9(8)
C1	12.6(10)	10.4(10)	14(1)	0.6(9)	7.5(9)	0.7(9)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
03	Nal	2.4311(18)	Na1	N4	2.556(2)
03	N1	1.246(3)	O2	Na1 ²	2.4285(18)
O4	N1	1.275(2)	N1	N2	1.316(3)
01	Na11	2.3641(17)	N2	Na1 ⁴	2.605(2)
01	Nal	2.3641(17)	N2	C1	1.382(3)
Nal	Na1 ²	3.4769(19)	N3	Na1 ⁴	2.654(2)
Nal	02	2.350(2)	N3	N3 ²	1.298(4)
Nal	$O2^2$	2.4286(18)	N3	C1	1.371(3)
Nal	N2 ³	2.605(2)	N4	N4 ²	1.337(4)
Nal	N3 ³	2.654(2)	N4	C1	1.337(3)

Table S15 Bond Lengths for 3.

¹-X,+Y,-Z; ²1-X,+Y,1-Z; ³1/2-X,-1/2+Y,1-Z; ⁴1/2-X,1/2+Y,1-Z

Table S16 Bond Angles for 3.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	O3	Nal	140.19(14)	O2 ²	Na1	N4	85.70(7)
Nal	01	Na11	126.62(11)	N2 ³	Nal	Na1 ²	96.64(5)
03	Nal	Na1 ²	112.89(6)	N2 ³	Nal	N3 ³	50.26(6)
03	Nal	N2 ³	129.66(7)	N3 ³	Nal	Na1 ²	139.06(5)
03	Nal	N3 ³	82.85(7)	N4	Nal	Na1 ²	63.19(5)
03	Na1	N4	63.86(6)	N4	Na1	N2 ³	159.82(7)
01	Nal	03	91.78(7)	N4	Nal	N3 ³	146.66(7)
01	Na1	Na1 ²	121.96(5)	Na1	02	Na1 ²	93.36(6)
01	Na1	$O2^2$	90.96(5)	O3	N1	04	119.51(18)
01	Na1	N2 ³	106.40(8)	O3	N1	N2	125.83(18)
01	Na1	N3 ³	93.51(7)	O4	N1	N2	114.66(18)
01	Nal	N4	86.16(7)	N1	N2	Na1 ⁴	138.96(14)
02	Na1	03	86.26(7)	N1	N2	C1	119.70(18)
$O2^2$	Na1	03	149.16(7)	C1	N2	Na1 ⁴	100.84(13)
02	Nal	01	162.09(7)	N3 ²	N3	Na1 ⁴	141.79(7)
02	Nal	Na1 ²	44.21(5)	N3 ²	N3	C1	118.17(12)
O2 ²	Nal	Na1 ²	42.43(5)	C1	N3	Na1 ⁴	98.96(13)
02	Nal	O2 ²	81.88(7)	N4 ²	N4	Nal	109.51(8)
02	Nal	N2 ³	88.32(7)	C1	N4	Nal	129.25(15)
O2 ²	Nal	N2 ³	78.50(6)	C1	N4	N4 ²	117.95(12)
02	Na1	N3 ³	103.88(7)	N3	C1	N2	108.47(18)
$O2^2$	Na1	N3 ³	127.62(7)	N4	C1	N2	127.69(19)
02	Nal	N4	77.00(7)	N4	C1	N3	123.83(19)

А	B	С	D	Angle/°	Α	B	С	D	Angle/°
03	N1	N2	Na11	163.22(18)	Na1 ¹	N3	C1	N4	170.10(19)
03	N1	N2	C1	-6.8(3)	Nal	N4	C1	N2	27.3(3)
O4	N1	N2	Na1 ¹	-17.2(3)	Nal	N4	C1	N3	-154.44(17)
O4	N1	N2	C1	172.8(2)	N1	N2	C1	N3	-175.0(2)
Nal	03	N1	O4	152.68(17)	N1	N2	C1	N4	3.4(3)
Nal	03	N1	N2	-27.7(4)	N3 ²	N3	C1	N2	177.9(2)
Na11	N2	C1	N3	11.67(19)	N3 ²	N3	C1	N4	-0.6(4)
Na1 ¹	N2	C1	N4	-169.9(2)	N4 ²	N4	C1	N2	-175.5(2)
Na11	N3	C1	N2	-11.39(19)	N4 ²	N4	C1	N3	2.8(4)

Table S17 Torsion Angles for 3.

¹1/2-X,1/2+Y,1-Z; ²1-X,+Y,1-Z

Table S18 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **3**.

Atom	x	У	Z	U(eq)
H1	423	4624	-504	22
H2A	6444	3296	9671	23
H2B	6229	2278	8633	23

Table S19 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **4**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq.)
K1	4848.9(2)	7500	7500	22.90(19)
K2	2937.3(3)	7500	7500	37.2(2)
01	3868.9(6)	6374.8(18)	5070(3)	23.9(3)
02	4494.2(5)	5352.2(18)	2306(3)	22.5(3)
03	2500	5000	4064(5)	32.1(5)
N4	4003.4(6)	5477(2)	2979(3)	17.7(3)
N3	3596.8(6)	4732(2)	1662(4)	19.2(4)
N2	3209.3(6)	3060(2)	-1510(4)	21.1(4)
N1	4179.2(7)	3064(2)	-1435(4)	23.9(4)
C1	3701.0(7)	3608(2)	-491(4)	16.8(4)

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
K1	14.5(3)	26.3(3)	27.8(4)	-4.0(3)	0	0
K2	15.2(3)	46.3(5)	50.2(5)	-17.4(4)	0	0
01	24.3(7)	25.6(7)	21.8(7)	-8.6(6)	4.5(6)	-1.1(6)
02	13.1(6)	24.6(7)	29.9(8)	-6.2(6)	1.7(5)	0.0(5)
O3	19.5(10)	44.0(13)	33.0(12)	0	0	7.9(9)
N4	17.0(7)	16.2(7)	20.0(8)	-0.4(6)	1.3(6)	0.2(6)
N3	14.1(7)	21.0(8)	22.4(8)	-4.4(7)	2.4(6)	-2.0(6)
N2	14.6(7)	26.5(8)	22.3(8)	-4.3(7)	-1.0(6)	0.0(6)
N1	16.2(7)	28.2(8)	27.3(9)	-11.0(8)	0.0(7)	-0.9(7)
C1	15.7(8)	16.8(8)	17.8(9)	2.7(7)	0.2(7)	-0.2(7)

Table S20 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **4**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table S21 Bond Lengths for 4.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
K1	01	2.8089(16)	К2	N3 ⁵	3.3741(18)
K1	O1 ¹	2.8090(15)	K2	N3 ²	3.3741(18)
K1	02	3.1145(15)	K2	N29	2.8832(18)
K1	$O2^1$	3.1145(15)	K2	N2 ¹⁰	2.8832(18)
K1	$O2^2$	2.9732(16)	01	N4	1.263(2)
K1	O2 ³	2.8006(15)	O2	K1 ¹¹	2.9732(16)
K1	$O2^4$	2.8006(15)	O2	K1 ⁴	2.8005(15)
K1	O2 ⁵	2.9732(16)	O2	N4	1.248(2)
K1	N41	3.3843(17)	03	K2 ⁶	2.7909(14)
K1	N4	3.3842(17)	N4	N3	1.317(2)
K1	N14	3.0503(19)	N3	K2 ¹¹	3.3741(18)
K1	N1 ³	3.0503(18)	N3	C1	1.380(2)
K2	K2 ⁶	4.5505(10)	N2	K2 ¹²	2.8833(18)
K2	K2 ⁵	4.7044(9)	N2	N2 ¹³	1.294(3)
K2	K2 ⁷	4.5505(10)	N2	C1	1.370(2)
K2	011	2.7082(15)	N1	K14	3.0502(18)
K2	01	2.7083(15)	N1	N1 ¹³	1.351(3)
K2	O3 ⁸	2.7909(14)	N1	C1	1.327(2)
K2	03	2.7909(14)			

¹+X,3/2-Y,3/2-Z; ²+X,3/2-Y,1/2-Z; ³1-X,1/2+Y,1/2+Z; ⁴1-X,1-Y,1-Z; ⁵+X,+Y,1+Z; ⁶1/2-X,1-Y,+Z; ⁷1/2-X,2-Y,+Z; ⁸1/2-X,1/2+Y,3/2-Z; ⁹1/2-X,1/2+Y,1/2-Z; ¹⁰1/2-X,1-Y,1+Z; ¹¹+X,+Y,-1+Z; ¹²1/2-X,1-Y,-1+Z; ¹³+X,1/2-Y,-1/2-Z

Table S22 Bond Angles for 4.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	K1	O1 ¹	62.49(6)	O1 ¹	K2	01	65.09(6)
01	K1	02	42.61(4)	01	K2	O3 ⁸	143.90(4)
01	K1	$O2^2$	82.70(4)	O1 ¹	K2	O3 ⁸	80.76(4)
O11	K1	O2 ²	68.11(4)	O11	K2	O3	143.90(4)
O1 ¹	K1	$O2^1$	42.61(4)	01	K2	O3	80.76(4)
01	K1	$O2^1$	104.99(4)	O1 ¹	K2	N3 ³	67.75(5)
O11	K1	02	104.99(4)	O1 ¹	K2	N3 ²	64.60(4)
01	K1	O2 ³	68.11(4)	01	K2	N3 ³	64.60(4)
O11	K1	O2 ³	82.70(4)	01	K2	N3 ²	67.75(5)
O11	K1	N4	83.49(4)	01	K2	N2 ⁹	146.90(5)
O1 ¹	K1	N4 ¹	21.01(4)	O1 ¹	K2	N2 ⁹	143.63(5)
01	K1	N41	83.49(4)	O1 ¹	K2	N2 ¹⁰	146.90(5)
01	K1	N4	21.01(4)	01	K2	N2 ¹⁰	143.64(5)
01	K1	N1 ⁴	150.09(5)	O3 ⁸	K2	K1	112.579(18)
O1 ¹	K1	N1 ⁵	150.09(5)	03	K2	K1	112.578(18)
O1 ¹	K1	N1 ⁴	117.93(4)	O3 ⁸	K2	K2 ²	54.61(4)
01	K1	N1 ⁵	117.93(4)	03	K2	K2 ⁶	35.39(4)
O2 ⁴	K1	O11	137.83(4)	03	K2	K2 ⁷	116.97(3)
O2 ⁵	K1	O1 ¹	103.99(4)	O3 ⁸	K2	K2 ⁷	35.39(4)
O2 ⁴	K1	01	103.99(4)	03	K2	K2 ²	125.39(4)
O2 ⁵	K1	01	137.83(4)	O3 ⁸	K2	K2 ⁶	116.97(3)
$O2^4$	K1	O2 ³	131.84(5)	O3 ⁸	K2	03	134.84(4)
O2 ³	K1	02	69.08(5)	03	K2	N3 ³	108.76(5)
O2 ⁵	K1	$O2^1$	74.54(5)	03	K2	N3 ²	92.65(4)
O2 ⁵	K1	O2 ⁴	109.83(6)	O3 ⁸	K2	N3 ²	108.76(5)
$O2^2$	K1	02	101.18(4)	O3 ⁸	K2	N3 ³	92.65(4)
$O2^4$	K1	$O2^2$	70.67(5)	O3 ⁸	K2	N2 ¹⁰	66.88(4)
02	K1	O21	147.59(5)	03	K2	N2 ¹⁰	69.17(4)
$O2^4$	K1	$O2^1$	125.98(5)	03	K2	N2 ⁹	66.88(4)
O2 ³	K1	$O2^2$	146.00(6)	O3 ⁸	K2	N29	69.17(4)
O2 ²	K1	O21	69.08(5)	N3 ³	K2	K1	61.38(3)
O2 ⁵	K1	O2 ³	70.67(5)	N3 ²	K2	K1	61.38(3)
O2 ⁵	K1	02	125.98(5)	N3 ³	K2	K2 ²	125.47(3)
O2 ³	K1	O21	101.18(4)	N3 ³	K2	K2 ⁷	69.18(3)
O2 ⁵	K1	O2 ²	131.84(5)	N3 ²	K2	K2 ⁷	143.77(3)
O2 ⁴	K1	O2	74.54(5)	N3 ³	K2	K2 ⁶	143.77(3)
O2 ⁵	K1	N4	136.36(4)	N3 ²	K2	K2 ²	54.53(3)
02	K1	N4	21.63(4)	N3 ²	K2	K2 ⁶	69.18(3)

O2 ²	K1	N4	91.18(4)	N3 ³	K2	N3 ²	122.76(6)
$O2^2$	K1	N4 ¹	67.75(4)	N2 ¹⁰	K2	K1	167.03(3)
O21	K1	N4	126.00(4)	N2 ⁹	K2	K1	167.03(3)
O2 ⁴	K1	N4 ¹	136.36(4)	N2 ¹⁰	K2	K2 ⁶	71.25(4)
02	K1	N41	126.00(4)	N2 ⁹	K2	K2 ²	80.70(3)
O21	K1	N41	21.63(4)	N2 ¹⁰	K2	K2 ⁷	53.39(4)
O2 ⁵	K1	N4 ¹	88.86(4)	N2 ⁹	K2	K2 ⁶	53.39(4)
O2 ³	K1	N4	67.75(4)	N2 ⁹	K2	K2 ⁷	71.25(4)
O2 ³	K1	N4 ¹	91.18(4)	N2 ¹⁰	K2	K2 ²	99.30(3)
O2 ⁴	K1	N4	88.86(4)	N2 ¹⁰	K2	N3 ²	131.54(5)
O2 ³	K1	N14	140.88(5)	N2 ⁹	K2	N3 ²	105.69(4)
$O2^2$	K1	N1 ⁵	140.88(5)	N2 ⁹	K2	N3 ³	131.54(5)
O2 ⁵	K1	N1 ⁵	53.84(5)	N2 ¹⁰	K2	N3 ³	105.69(4)
O2 ⁵	K1	N1 ⁴	72.08(5)	N2 ¹⁰	K2	N2 ⁹	25.94(7)
O2 ⁴	K1	N1 ⁴	53.84(5)	K2	01	K1	116.21(5)
O2 ⁴	K1	N1 ⁵	72.08(5)	N4	01	K1	106.10(10)
$O2^2$	K1	N1 ⁴	71.39(5)	N4	01	K2	137.64(11)
O2 ³	K1	N1 ⁵	71.39(5)	K1 ¹¹	02	K1	101.18(4)
N4	K1	N41	104.50(6)	K1 ⁴	02	K1 ¹¹	109.33(5)
N1 ⁵	K1	02	79.86(4)	K1 ⁴	02	K1	105.47(5)
N14	K1	O21	79.86(4)	N4	02	K1	91.44(11)
N1 ⁴	K1	02	127.72(4)	N4	02	K1 ⁴	127.71(12)
N1 ⁵	K1	O21	127.73(4)	N4	02	K1 ¹¹	115.35(12)
N1 ⁵	K1	N41	142.02(4)	K2	03	K2 ⁶	109.22(8)
N1 ⁴	K1	N4 ¹	99.67(4)	01	N4	K1	52.89(9)
N1 ⁵	K1	N4	99.67(4)	01	N4	N3	115.36(15)
N14	K1	N4	142.02(4)	02	N4	K1	66.93(10)
$N1^4$	K1	N1 ⁵	77.32(7)	O2	N4	01	119.68(16)
K1	K2	K2 ²	90.0	02	N4	N3	124.96(16)
K2 ⁶	K2	K1	118.098(16)	N3	N4	K1	167.64(12)
K2 ⁷	K2	K1	118.098(16)	N4	N3	K2 ¹¹	109.63(11)
K2 ⁷	K2	K2 ²	90.0	N4	N3	C1	120.15(16)
K2 ⁶	K2	K2 ²	90.0	C1	N3	K2 ¹¹	95.37(11)
K2 ⁶	K2	K2 ⁷	123.80(3)	N2 ¹²	N2	K2 ¹³	77.03(3)
O1 ¹	K2	K1	32.54(3)	N2 ¹²	N2	C1	118.36(11)
01	K2	K1	32.54(3)	C1	N2	K2 ¹³	164.59(13)
01	K2	K2 ⁷	133.73(3)	N1 ¹²	N1	K14	110.54(10)
O1 ¹	K2	K2 ⁶	133.73(3)	C1	N1	K1 ⁴	122.37(13)
01	K2	K2 ²	114.96(3)	C1	N1	N1 ¹²	117.96(11)
01	K2	K2 ⁶	95.90(3)	N2	C1	N3	107.70(16)

011	K2	K2 ⁷	95.90(3)	N1	C1	N3	128.61(17)
O1 ¹	K2	K2 ²	65.03(3)	N1	C1	N2	123.65(17)

¹+X,3/2-Y,3/2-Z; ²+X,+Y,1+Z; ³+X,3/2-Y,1/2-Z; ⁴1-X,1-Y,1-Z; ⁵1-X,1/2+Y,1/2+Z; ⁶1/2-X,1-Y,+Z; ⁷1/2-X,2-Y,+Z; ⁸1/2-X,1/2+Y,3/2-Z; ⁹1/2-X,1-Y,1+Z; ¹⁰1/2-X,1/2+Y,1/2-Z; ¹¹+X,+Y,-1+Z; ¹²+X,1/2-Y,-1/2-Z; ¹³1/2-X,1-Y,-1+Z

Table S23 Torsion Angles for 4.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
K1	01	N4	02	-4.5(2)	K2	01	N4	N3	-7.3(3)
K1	01	N4	N3	175.50(13)	K2 ¹	N3	C1	N2	-62.27(14)
$K1^1$	02	N4	K1	-103.10(8)	K2 ¹	N3	C1	N1	119.8(2)
K1 ²	02	N4	K1	110.90(12)	K2 ³	N2	C1	N3	-0.3(6)
$K1^1$	02	N4	01	-99.22(17)	K2 ³	N2	C1	N1	177.7(4)
K1	02	N4	01	3.88(17)	01	N4	N3	K21	76.92(16)
K1 ²	02	N4	01	114.78(16)	01	N4	N3	C1	-174.29(16)
K1 ²	02	N4	N3	-65.2(2)	O2	N4	N3	$K2^1$	-103.10(18)
$K1^1$	02	N4	N3	80.81(19)	O2	N4	N3	C1	5.7(3)
K1	02	N4	N3	-176.09(17)	N4	N3	C1	N2	-178.68(17)
K1	N4	N3	K21	93.9(6)	N4	N3	C1	N1	3.4(3)
K1	N4	N3	C1	-157.3(5)	N2 ⁴	N2	C1	N3	-177.5(2)
K1 ²	N1	C1	N3	35.4(3)	N2 ⁴	N2	C1	N1	0.5(3)
K1 ²	N1	C1	N2	-142.14(15)	N1 ⁴	N1	C1	N3	179.2(2)
K2	01	N4	K1	177.2(2)	N1 ⁴	N1	C1	N2	1.6(4)
K2	01	N4	02	172.71(13)					

¹+X,+Y,-1+Z; ²1-X,1-Y,1-Z; ³1/2-X,1-Y,-1+Z; ⁴+X,1/2-Y,-1/2-Z

Table S24 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Ų×10³) for 4.

Atom	x	У	Z	U(eq)
H3	2236	5324	3068	39

Parameters $(A^2 \times 10^2)$ for 5. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.									
Atom	x	У	Z	U(eq.)					
Rb1	0	466.7(5)	2500	14.8(2)					
Rb2	0	4568.0(5)	2500	18.9(2)					
01	1946(4)	2435(3)	3076(5)	19.6(9)					
O2	3569(4)	3821(3)	4135(4)	16.4(8)					
N1	3331(5)	2782(4)	3752(5)	13.7(8)					
N4	8033(5)	3583(3)	4887(5)	17.7(9)					
N3	6512(5)	3420(4)	4432(5)	18.7(10)					
N2	4450(5)	1972(3)	4014(5)	16.0(9)					
C1	5998(6)	2334(4)	4548(6)	13.1(10)					

Table S25 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **5**. U_{ea} is defined as 1/3 of the trace of the orthogonalised U_{II} tensor

Table S26 Anisotropic Displacement Parameters ($Å^{2} \times 10^{3}$) for **5**. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

	1	L				
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Rb1	21.0(4)	9.4(4)	13.3(4)	0	5.5(3)	0
Rb2	20.6(4)	12.8(4)	23.1(4)	0	7.5(3)	0
01	10.9(19)	21(2)	24(2)	0.7(14)	3.0(18)	-7.2(13)
02	20.7(19)	12.4(15)	18.8(18)	-2.3(14)	10.2(15)	-0.3(14)
N1	20(2)	18.3(19)	4.6(19)	0.4(16)	5.9(17)	-2.0(18)
N4	20(2)	13.4(19)	20(2)	4.3(17)	6.9(19)	-0.3(17)
N3	17(2)	18(2)	21(2)	2.6(18)	7.0(19)	-0.4(18)
N2	22(2)	11.3(19)	14(2)	-0.1(16)	6.0(18)	4.7(17)
C1	11(2)	16(2)	13(3)	-0.1(19)	5(2)	0.7(18)

Table S27 Bond Lengths for 5.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Rb1	Rb2 ¹	4.6687(9)	Rb2	N4 ¹⁰	3.218(4)
Rb1	Rb2 ²	4.6687(9)	Rb2	N211	3.207(4)
Rb1	O1 ³	2.806(3)	Rb2	N2 ¹²	3.207(4)
Rb1	01	2.806(3)	01	N1	1.256(6)
Rb1	$O2^4$	2.979(3)	O2	Rb1 ¹³	2.979(3)
Rb1	O2 ⁵	2.987(4)	O2	Rb1 ⁵	2.987(4)
Rb1	O2 ²	2.979(3)	O2	N1	1.241(5)
Rb1	O2 ⁶	2.987(4)	N1	N2	1.338(6)
Rb1	N4 ²	3.574(4)	N4	Rb1 ¹³	3.574(4)
Rb1	N4 ⁴	3.574(4)	N4	Rb214	3.463(4)

Rb1	N3 ²	2.967(4)	N4	Rb2 ⁹	3.218(4)
Rb1	N3 ⁴	2.967(4)	N4	N3	1.311(6)
Rb2	O1 ³	2.961(3)	N4	C115	1.353(6)
Rb2	01	2.961(3)	N3	Rb1 ¹³	2.967(4)
Rb2	02	3.174(4)	N3	C1	1.350(6)
Rb2	O2 ³	3.174(4)	N2	Rb2 ⁵	3.512(4)
Rb2	N1	3.500(4)	N2	$Rb2^1$	3.207(4)
Rb2	N1 ³	3.500(4)	N2	C1	1.382(7)
Rb2	N4 ⁷	3.463(4)	C1	$Rb2^1$	3.635(5)
Rb2	N4 ⁸	3.463(4)	C1	N4 ¹⁵	1.353(6)
Rb2	N49	3.218(4)			

¹1/2+X,-1/2+Y,+Z; ²-1/2+X,-1/2+Y,+Z; ³-X,+Y,1/2-Z; ⁴1/2-X,-1/2+Y,1/2-Z; ⁵1/2-X,1/2-Y,1-Z; ⁶-1/2+X,1/2-Y,-1/2+Z; ⁷-1+X,+Y,+Z; ⁸1-X,+Y,1/2-Z; ⁹1-X,1-Y,1-Z; ¹⁰-1+X,1-Y,-1/2+Z; ¹¹1/2-X,1/2+Y,1/2-Z; ¹²-1/2+X,1/2+Y,+Z; ¹³1/2+X,1/2+Y,+Z; ¹⁴1+X,+Y,+Z; ¹⁵3/2-X,1/2-Y,1-Z

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
Rb2 ¹	Rb1	Rb2 ²	154.43(2)	01	Rb2	N2 ¹²	127.92(11)
01	Rb1	Rb2 ¹	136.84(8)	O2 ³	Rb2	02	148.61(11)
O1 ³	Rb1	Rb2 ¹	68.13(8)	02	Rb2	N1 ³	128.18(9)
01	Rb1	$Rb2^2$	68.13(8)	O2 ³	Rb2	N1	128.18(9)
O1 ³	Rb1	$Rb2^2$	136.84(8)	O2 ³	Rb2	N1 ³	20.70(9)
01	Rb1	O1 ³	72.51(15)	02	Rb2	N1	20.70(9)
01	Rb1	O2 ⁴	89.22(11)	02	Rb2	N4 ¹⁰	67.94(10)
01	Rb1	$O2^1$	141.09(11)	02	Rb2	N4 ⁷	106.80(9)
O1 ³	Rb1	O2 ⁵	89.22(11)	O2 ³	Rb2	N4 ⁸	106.80(9)
01	Rb1	O2 ⁶	104.24(10)	02	Rb2	N49	137.14(10)
O1 ³	Rb1	O21	104.24(10)	O2 ³	Rb2	N49	67.94(10)
O1 ³	Rb1	O2 ⁶	141.09(11)	O2 ³	Rb2	N4 ⁷	62.23(9)
01	Rb1	O2 ⁵	64.63(11)	O2 ³	Rb2	N4 ¹⁰	137.14(10)
O1 ³	Rb1	O2 ⁴	64.63(11)	02	Rb2	N4 ⁸	62.22(9)
01	Rb1	N4 ⁶	154.46(11)	O2 ³	Rb2	N2 ¹²	108.79(10)
O1 ³	Rb1	N46	94.31(10)	02	Rb2	N2 ¹²	98.29(10)
O1 ³	Rb1	N4 ¹	154.46(11)	O2 ³	Rb2	N2 ¹¹	98.29(10)
01	Rb1	N41	94.31(10)	02	Rb2	N211	108.79(10)
O1 ³	Rb1	N31	151.53(13)	N1 ³	Rb2	N1	108.19(14)
O1 ³	Rb1	N3 ⁶	113.57(12)	N4 ⁷	Rb2	N1 ³	55.32(10)
01	Rb1	N31	113.57(12)	N4 ⁸	Rb2	N1	55.32(10)
01	Rb1	N3 ⁶	151.53(13)	N4 ⁷	Rb2	N1	100.68(10)
O2 ⁶	Rb1	Rb2 ¹	117.35(7)	N4 ¹⁰	Rb2	N1 ³	144.88(10)

 Table S28 Bond Angles for 5.

O2 ⁴	Rb1	Rb2 ²	97.45(7)	N49	Rb2	N1 ³	87.52(10)
O2 ⁵	Rb1	Rb2 ²	89.52(7)	N4 ⁸	Rb2	N1 ³	100.68(10)
O21	Rb1	Rb2 ²	117.35(7)	N49	Rb2	N1	144.88(10)
O2 ⁵	Rb1	$Rb2^1$	97.45(7)	N4 ¹⁰	Rb2	N1	87.53(10)
O2 ⁶	Rb1	Rb2 ²	42.22(7)	N4 ¹⁰	Rb2	N48	113.86(13)
O21	Rb1	$Rb2^1$	42.22(7)	N4 ¹⁰	Rb2	N47	91.58(10)
$O2^4$	Rb1	$Rb2^1$	89.52(7)	N4 ⁹	Rb2	N4 ⁸	91.58(10)
O2 ⁶	Rb1	O2 ⁴	76.67(10)	N4 ⁸	Rb2	N47	141.83(14)
O21	Rb1	O2 ⁵	76.67(10)	N4 ⁹	Rb2	N4 ⁷	113.86(13)
O21	Rb1	$O2^4$	125.35(11)	N4 ¹⁰	Rb2	N49	97.32(15)
O2 ⁶	Rb1	O21	101.16(12)	N2 ¹¹	Rb2	N1 ³	113.31(10)
O2 ⁶	Rb1	O2 ⁵	125.35(11)	N2 ¹²	Rb2	N1	113.31(10)
O2 ⁵	Rb1	$O2^4$	148.19(12)	N2 ¹²	Rb2	N1 ³	127.96(10)
O2 ⁵	Rb1	N4 ⁶	138.66(10)	N2 ¹¹	Rb2	N1	127.96(10)
O21	Rb1	$N4^1$	72.05(9)	N2 ¹²	Rb2	N4 ⁸	79.44(10)
O2 ⁴	Rb1	N41	138.66(10)	N2 ¹²	Rb2	N49	40.85(11)
O21	Rb1	N4 ⁶	62.52(10)	N2 ¹²	Rb2	N4 ⁷	138.32(10)
O2 ⁶	Rb1	N41	62.52(10)	N2 ¹¹	Rb2	N49	67.53(10)
O2 ⁵	Rb1	N41	65.25(9)	N2 ¹¹	Rb2	N47	79.44(10)
$O2^4$	Rb1	N4 ⁶	65.25(9)	N2 ¹¹	Rb2	N4 ⁸	138.32(10)
O2 ⁶	Rb1	N46	72.05(9)	N2 ¹¹	Rb2	N4 ¹⁰	40.85(11)
N4 ⁶	Rb1	Rb2 ¹	47.42(7)	N2 ¹²	Rb2	N4 ¹⁰	67.53(10)
N4 ⁶	Rb1	Rb2 ²	114.10(7)	N2 ¹¹	Rb2	N2 ¹²	60.96(15)
N41	Rb1	Rb2 ²	47.42(7)	Rb1	01	Rb2	109.66(13)
N41	Rb1	Rb2 ¹	114.10(7)	N1	01	Rb1	143.6(3)
N46	Rb1	N41	105.40(13)	N1	01	Rb2	104.9(3)
N31	Rb1	Rb2 ²	65.04(8)	Rb1 ¹³	02	Rb1 ⁵	103.33(10)
N3 ¹	Rb1	$Rb2^1$	94.07(8)	Rb1 ¹³	02	Rb2	98.67(10)
N36	Rb1	$Rb2^1$	65.04(8)	Rb1 ⁵	02	Rb2	114.02(11)
N3 ⁶	Rb1	$Rb2^2$	94.07(8)	N1	02	Rb1 ⁵	121.4(3)
N3 ⁶	Rb1	O2 ⁶	52.63(10)	N1	02	Rb1 ¹³	122.3(3)
N31	Rb1	O2 ⁶	66.42(11)	N1	02	Rb2	94.6(3)
N3 ⁶	Rb1	$O2^1$	66.42(11)	01	N1	Rb2	54.8(2)
N31	Rb1	O2 ⁵	70.60(11)	01	N1	N2	115.7(4)
N3 ⁶	Rb1	O2 ⁵	140.07(11)	02	N1	Rb2	64.7(2)
N3 ¹	Rb1	$O2^4$	140.07(11)	02	N1	01	119.3(4)
N31	Rb1	O21	52.63(10)	02	N1	N2	125.0(4)
N3 ⁶	Rb1	O2 ⁴	70.60(11)	N2	N1	Rb2	169.4(3)
N31	Rb1	N46	88.58(11)	Rb2 ¹⁰	N4	Rb1 ¹³	98.96(11)
N31	Rb1	N41	20.55(10)	Rb2 ¹⁴	N4	Rb1 ¹³	83.12(9)

N3 ⁶	Rb1	N4 ¹	88.58(11)	Rb2 ¹⁰	N4	Rb2 ¹⁴	88.42(10)
N3 ⁶	Rb1	N4 ⁶	20.55(10)	N3	N4	Rb1 ¹³	52.6(2)
N36	Rb1	N31	75.06(17)	N3	N4	Rb214	125.0(3)
01	Rb2	O1 ³	68.17(14)	N3	N4	Rb2 ¹⁰	125.1(3)
O1 ³	Rb2	02	107.91(9)	N3	N4	C115	118.8(4)
01	Rb2	O2 ³	107.91(9)	C1 ¹⁵	N4	Rb1 ¹³	164.0(3)
O1 ³	Rb2	O2 ³	40.93(9)	C1 ¹⁵	N4	Rb2 ¹⁰	96.8(3)
01	Rb2	02	40.93(9)	C115	N4	Rb214	94.6(3)
O1 ³	Rb2	N1	88.08(10)	N4	N3	Rb1 ¹³	106.8(3)
01	Rb2	N1	20.29(9)	N4	N3	C1	117.6(4)
01	Rb2	N1 ³	88.08(10)	C1	N3	Rb113	132.8(3)
O1 ³	Rb2	N1 ³	20.29(9)	Rb2 ²	N2	Rb2 ⁵	87.74(9)
O1 ³	Rb2	N47	55.23(11)	N1	N2	Rb2 ⁵	111.5(3)
O1 ³	Rb2	N4 ⁸	91.64(10)	N1	N2	$Rb2^2$	138.5(3)
01	Rb2	N4 ⁹	144.93(11)	N1	N2	C1	118.0(4)
01	Rb2	N4 ⁸	55.23(11)	C1	N2	Rb2 ⁵	92.0(3)
01	Rb2	N4 ¹⁰	106.00(11)	C1	N2	$Rb2^2$	96.6(3)
01	Rb2	N47	91.64(10)	N4 ¹⁵	C1	Rb2 ²	61.5(3)
O1 ³	Rb2	N49	106.00(11)	N4 ¹⁵	C1	N2	110.1(4)
O1 ³	Rb2	N4 ¹⁰	144.93(11)	N3	C1	Rb2 ²	143.0(4)
O1 ³	Rb2	N211	127.92(11)	N3	C1	N4 ¹⁵	123.6(5)
01	Rb2	N2 ¹¹	144.38(11)	N3	C1	N2	126.1(4)
O1 ³	Rb2	N2 ¹²	144.38(11)	N2	C1	Rb2 ²	61.2(2)

¹-1/2+X,-1/2+Y,+Z; ²1/2+X,-1/2+Y,+Z; ³-X,+Y,1/2-Z; ⁴-1/2+X,1/2-Y,-1/2+Z; ⁵1/2-X,1/2-Y,1-Z; ⁶1/2-X,-1/2+Y,1/2-Z; ⁷-1+X,+Y,+Z; ⁸1-X,+Y,1/2-Z; ⁹-1+X,1-Y,-1/2+Z; ¹⁰1-X,1-Y,1-Z; ¹¹-1/2+X,1/2+Y,+Z; ¹²1/2-X,1/2+Y,1/2-Z; ¹³1/2+X,1/2+Y,+Z; ¹⁴1+X,+Y,+Z; ¹⁵3/2-X,1/2-Y,1-Z

Table S29 Torsion Angles for 5.

А	В	С	D	Angle/°	Α	B	С	D	Angle/°
Rb1	01	N1	Rb2	-161.5(6)	Rb2 ⁵	N4	N3	C1	119.4(4)
Rb1	01	N1	O2	-155.5(4)	Rb2 ⁶	N4	N3	C1	-123.8(4)
Rb1	01	N1	N2	24.1(8)	Rb2 ¹	N2	C1	Rb2 ³	87.95(12)
Rb11	02	N1	Rb2	121.9(3)	Rb2 ¹	N2	C1	N4 ⁴	49.3(4)
Rb1 ²	02	N1	Rb2	-103.3(3)	Rb2 ³	N2	C1	N4 ⁴	-38.7(4)
Rb11	02	N1	01	116.4(4)	Rb2 ³	N2	C1	N3	136.7(5)
Rb1 ²	02	N1	01	-108.7(4)	Rb2 ¹	N2	C1	N3	-135.4(5)
Rb1 ²	02	N1	N2	71.8(5)	01	N1	N2	Rb2 ¹	-84.5(4)
Rb11	02	N1	N2	-63.0(5)	01	N1	N2	Rb2 ³	28.0(7)
Rb1 ²	N4	N3	C1	163.5(6)	01	N1	N2	C1	170.9(4)
Rb1 ²	N3	C1	Rb2 ³	72.7(7)	O2	N1	N2	Rb2 ³	-152.5(4)

Rb1 ²	N3	C1	N4 ⁴	158.7(4)	O2	N1 N2	Rb2 ¹	95.0(4)
Rb1 ²	N3	C1	N2	-16.1(8)	02	N1 N2	C1	-9.6(7)
Rb2	01	N1	02	6.0(5)	N1	N2 C1	Rb2 ³	-156.3(5)
Rb2	01	N1	N2	-174.5(3)	N1	N2 C1	N4 ⁴	165.0(4)
Rb2	02	N1	01	-5.4(4)	N1	N2 C1	N3	-19.7(8)
Rb2	02	N1	N2	175.1(4)	N4	N3 C1	Rb2 ³	-85.7(7)
Rb2	N1	N2	Rb2 ¹	-109.9(16)	N4	N3 C1	N4 ⁴	0.4(8)
Rb2	N1	N2	Rb2 ³	3(2)	N4	N3 C1	N2	-174.4(5)
Rb2	N1	N2	C1	145.5(14)	C1 ⁴	N4 N3	Rb1 ²	-163.9(4)
Rb2 ⁵	N4	N3	Rb1 ²	-44.1(4)	C1 ⁴	N4 N3	C1	-0.3(8)
Rb2 ⁶	N4	N3	Rb1 ²	72.7(3)				

¹1/2-X,1/2-Y,1-Z; ²1/2+X,1/2+Y,+Z; ³1/2+X,-1/2+Y,+Z; ⁴3/2-X,1/2-Y,1-Z; ⁵1+X,+Y,+Z; ⁶1-X,1-Y,1-Z

Table S30 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **6**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq.)
Cs1	12075.4(5)	958.6(4)	6969.3(4)	13.90(19)
01	7303(8)	4635(7)	3679(6)	20.3(9)
O2	3808(9)	7467(7)	1655(7)	20.0(8)
N1	5070(9)	5414(8)	2600(7)	13.7(9)
N2	4247(9)	3940(7)	2549(7)	14.5(9)
N3	1538(9)	2877(8)	1397(8)	17.2(9)
N4	-482(9)	3208(8)	206(7)	14.7(9)
C1	1993(10)	4652(9)	1196(8)	13.1(10)

Table S31 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for **6**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

	-	=		=		
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cs1	16.7(3)	10.1(3)	13.9(3)	-4.55(18)	-0.88(16)	-5.60(17)
01	16.2(19)	26(2)	19(2)	-12.4(18)	-3.6(16)	-6.1(16)
02	24(2)	10.7(19)	24(2)	-6.2(17)	-7.3(17)	-7.0(15)
N1	18(2)	17(2)	13(2)	-10.3(18)	3.6(17)	-10.4(17)
N2	18(2)	8.7(19)	16(2)	-5.5(17)	-0.8(17)	-4.8(16)
N3	19(2)	11(2)	18(2)	-5.1(18)	-0.7(19)	-5.6(18)
N4	16(2)	14(2)	18(2)	-6.4(18)	-1.5(18)	-9.8(17)
C1	12(2)	16(2)	16(2)	-10(2)	2.3(19)	-6.0(19)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cs1	01	3.048(4)	Cs1	N46	3.181(5)
Cs1	O11	3.180(4)	Cs1	N47	3.509(5)
Cs1	$O2^1$	3.230(4)	01	N1	1.259(6)
Cs1	$O2^2$	3.113(5)	O2	N1	1.245(6)
Cs1	O2 ³	3.275(5)	N1	N2	1.323(6)
Cs1	$N1^1$	3.650(5)	N2	C1	1.386(7)
Cs1	N2 ⁴	3.405(5)	N3	N4	1.311(7)
Cs1	N2 ⁵	3.298(5)	N3	C1	1.350(7)
Cs1	N3 ⁵	3.405(5)	N4	C18	1.358(7)
Cs1	N3 ⁴	3.671(5)			

Table S32Bond Lengths for 6.

¹2-X,1-Y,1-Z; ²1+X,-1+Y,1+Z; ³1-X,1-Y,1-Z; ⁴1+X,+Y,+Z; ⁵2-X,-Y,1-Z; ⁶1-X,-Y,1-Z; ⁷1+X,+Y,1+Z; ⁸-X,1-Y,-Z

Table S.	33 Bond	Angles	for	6.
----------	----------------	--------	-----	----

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
01	Cs1	O11	77.41(12)	N4 ⁶	Cs1	O2 ²	69.06(12)
O1 ¹	Cs1	$O2^2$	89.33(10)	N4 ⁷	Cs1	$N1^1$	61.55(10)
01	Cs1	O21	116.51(11)	N4 ⁶	Cs1	$N1^1$	140.56(11)
O11	Cs1	O21	39.39(11)	N4 ⁶	Cs1	N2 ⁵	149.63(12)
01	Cs1	O2 ³	144.08(12)	N4 ⁶	Cs1	N2 ⁴	60.92(12)
01	Cs1	$O2^2$	60.36(11)	N4 ⁷	Cs1	N3 ⁵	137.47(12)
01	Cs1	$N1^1$	97.00(12)	N4 ⁶	Cs1	N3 ⁴	84.32(12)
O1 ¹	Cs1	$N1^1$	19.73(11)	N4 ⁶	Cs1	N3 ⁵	117.09(12)
01	Cs1	N2 ⁴	128.09(12)	N4 ⁶	Cs1	N47	89.60(12)
01	Cs1	N2 ⁵	70.00(12)	Cs1	01	$Cs1^1$	102.59(12)
011	Cs1	N2 ⁵	62.26(11)	N1	01	$Cs1^1$	101.7(3)
O1 ¹	Cs1	N2 ⁴	139.88(11)	N1	01	Cs1	154.7(4)
O1 ¹	Cs1	N3 ⁴	103.55(11)	Cs1 ⁸	02	$Cs1^1$	101.91(12)
01	Cs1	N3 ⁵	53.46(11)	Cs18	02	Cs1 ²	96.13(12)
01	Cs1	N3 ⁴	153.80(11)	Cs1 ¹	02	$Cs1^2$	112.00(13)
011	Cs1	N3 ⁵	92.17(11)	N1	02	$Cs1^1$	99.6(3)
O11	Cs1	N46	148.11(12)	N1	02	Cs1 ²	113.9(3)
O1 ¹	Cs1	N4 ⁷	58.94(11)	N1	02	Cs1 ⁸	132.7(3)
01	Cs1	N46	108.93(12)	01	N1	$Cs1^1$	58.6(3)
01	Cs1	N4 ⁷	87.87(11)	01	N1	N2	116.1(5)
O2 ³	Cs1	O1 ¹	107.35(11)	02	N1	$Cs1^1$	60.7(3)

O2 ³	Cs1	O21	78.09(12)	O2	N1	01	119.3(5)
O2 ¹	Cs1	$O2^2$	112.00(13)	O2	N1	N2	124.6(5)
O2 ³	Cs1	$O2^2$	83.87(12)	N2	N1	Cs11	174.6(4)
$O2^2$	Cs1	$N1^1$	101.15(10)	Cs1 ⁴	N2	Cs19	85.00(11)
O21	Cs1	$N1^1$	19.66(11)	N1	N2	Cs19	114.2(3)
O2 ³	Cs1	$N1^1$	92.78(11)	N1	N2	Cs1 ⁴	128.1(3)
$O2^1$	Cs1	N2 ⁴	105.42(11)	N1	N2	C1	120.1(5)
O2 ³	Cs1	N2 ⁴	71.21(12)	C1	N2	Cs19	96.9(3)
$O2^1$	Cs1	N2 ⁵	74.37(12)	C1	N2	Cs1 ⁴	103.3(3)
O2 ³	Cs1	N2 ⁵	144.51(11)	Cs1 ⁹	N3	Cs16	79.68(10)
$O2^2$	Cs1	N2 ⁵	127.18(11)	Cs1 ⁴	N3	Cs19	79.50(11)
$O2^2$	Cs1	N2 ⁴	129.06(11)	Cs1 ⁴	N3	Cs16	98.83(12)
O21	Cs1	N3 ⁴	66.50(11)	N4	N3	Cs19	126.9(3)
O2 ³	Cs1	N3 ⁴	61.35(12)	N4	N3	Cs16	57.3(3)
$O2^2$	Cs1	N3 ⁴	145.04(11)	N4	N3	Cs1 ⁴	132.2(3)
$O2^2$	Cs1	N3 ⁵	111.49(11)	N4	N3	C1	119.2(4)
$O2^1$	Cs1	N3 ⁵	111.03(11)	C1	N3	Cs1 ⁴	99.3(3)
O2 ³	Cs1	N3 ⁵	155.59(10)	C1	N3	Cs19	86.2(3)
O21	Cs1	N4 ⁷	67.54(11)	C1	N3	Cs16	154.5(3)
O2 ³	Cs1	N4 ⁶	49.18(12)	Cs1 ⁶	N4	Cs1 ¹⁰	90.40(12)
O2 ³	Cs1	N47	66.79(12)	N3	N4	Cs110	108.3(3)
$O2^2$	Cs1	N4 ⁷	45.26(11)	N3	N4	Cs1 ⁶	102.4(3)
$N1^1$	Cs1	N3 ⁵	102.16(11)	N3	N4	C111	117.4(5)
N2 ⁴	Cs1	$N1^1$	123.14(11)	C111	N4	Cs110	101.5(3)
N2 ⁵	Cs1	$N1^1$	67.01(11)	C1 ¹¹	N4	Cs1 ⁶	131.5(3)
N2 ⁴	Cs1	N2 ⁵	95.00(11)	Cs19	C1	Cs1 ⁴	72.20(11)
N2 ⁵	Cs1	N3 ⁴	87.08(12)	N2	C1	Cs1 ⁴	56.2(3)
$N2^4$	Cs1	N3 ⁴	39.01(12)	N2	C1	Cs19	62.1(3)
N2 ⁵	Cs1	N3 ⁵	36.68(11)	N3	C1	Cs1 ⁴	60.5(3)
$N2^4$	Cs1	N3 ⁵	84.44(12)	N3	C1	Cs19	73.2(3)
N2 ⁴	Cs1	N4 ⁷	137.98(12)	N3	C1	N2	109.9(5)
N2 ⁵	Cs1	N4 ⁷	120.27(11)	N3	C1	N411	123.5(5)
N3 ⁴	Cs1	$N1^1$	84.95(12)	N4 ¹¹	C1	Cs19	133.6(3)
N3 ⁴	Cs1	N3 ⁵	100.50(11)	N4 ¹¹	C1	Cs1 ⁴	154.0(3)
N3 ⁴	Cs1	N4 ⁷	115.42(13)	N4 ¹¹	C1	N2	126.5(5)
N4 ⁶	Cs1	O21	127.24(11)				

¹2-X,1-Y,1-Z; ²1-X,1-Y,1-Z; ³1+X,-1+Y,1+Z; ⁴2-X,-Y,1-Z; ⁵1+X,+Y,+Z; ⁶1-X,-Y,1-Z; ⁷1+X,+Y,1+Z; ⁸-1+X,1+Y,-1+Z; ⁹-1+X,+Y,+Z; ¹⁰-1+X,+Y,-1+Z; ¹¹-X,1-Y,-Z

 Table S34 Torsion Angles for 6.

Α	В	С	D	Angle/°	Α	В	С	D	Angle/°
Cs1	01	N1	$Cs1^1$	163.8(8)	Cs1 ⁷	N3	C1	Cs1 ⁵	134.8(9)
Cs1	01	N1	02	164.0(5)	Cs1 ⁵	N3	C1	Cs1 ⁴	-78.69(14)
$Cs1^1$	01	N1	02	0.1(5)	Cs1 ⁴	N3	C1	Cs1 ⁵	78.69(14)
$Cs1^1$	01	N1	N2	179.6(4)	Cs17	N3	C1	Cs1 ⁴	56.1(8)
Cs1	01	N1	N2	-16.6(10)	Cs1 ⁵	N3	C1	N2	-27.7(4)
$Cs1^2$	02	N1	$Cs1^1$	-119.4(3)	Cs1 ⁷	N3	C1	N2	107.1(8)
Cs1 ³	02	N1	$Cs1^1$	116.1(4)	Cs1 ⁴	N3	C1	N2	51.0(4)
Cs1 ³	02	N1	01	116.0(5)	Cs1 ⁵	N3	C1	N4 ⁶	149.7(4)
$Cs1^2$	02	N1	01	-119.5(4)	Cs1 ⁴	N3	C1	N46	-131.6(5)
$Cs1^1$	02	N1	01	-0.1(5)	Cs17	N3	C1	N46	-75.4(10)
$Cs1^1$	02	N1	N2	-179.5(4)	01	N1	N2	Cs1 ⁵	-29.2(6)
Cs1 ³	02	N1	N2	-63.4(7)	01	N1	N2	$Cs1^4$	74.1(5)
$Cs1^2$	02	N1	N2	61.1(6)	01	N1	N2	C1	-171.6(4)
$Cs1^4$	N2	C1	Cs1 ⁵	-86.47(17)	O2	N1	N2	Cs1 ⁵	150.2(4)
Cs15	N2	C1	Cs1 ⁴	86.47(17)	O2	N1	N2	$Cs1^4$	-106.5(5)
$Cs1^4$	N2	C1	N3	-57.3(4)	O2	N1	N2	C1	7.8(8)
Cs1 ⁵	N2	C1	N3	29.2(5)	N1	N2	C1	$Cs1^4$	-123.1(5)
Cs15	N2	C1	N46	-148.2(5)	N1	N2	C1	Cs1 ⁵	150.4(6)
$Cs1^4$	N2	C1	N4 ⁶	125.3(5)	N1	N2	C1	N3	179.6(5)
Cs17	N3	N4	Cs18	-94.6(2)	N1	N2	C1	N46	2.2(8)
Cs1 ⁵	N3	N4	Cs1 ⁸	-24.3(5)	N4	N3	C1	Cs1 ⁵	-150.7(5)
Cs1 ⁵	N3	N4	$Cs1^7$	70.3(4)	N4	N3	C1	$Cs1^4$	130.6(5)
Cs1 ⁴	N3	N4	Cs17	-41.6(4)	N4	N3	C1	N2	-178.4(4)
$Cs1^4$	N3	N4	Cs1 ⁸	-136.2(2)	N4	N3	C1	N4 ⁶	-0.9(8)
Cs15	N3	N4	C16	-138.4(4)	C1	N3	N4	Cs17	-150.4(4)
Cs1 ⁷	N3	N4	C1 ⁶	151.3(5)	C1	N3	N4	Cs1 ⁸	114.9(4)
Cs1 ⁴	N3	N4	C1 ⁶	109.7(5)	C1	N3	N4	C1 ⁶	0.9(8)

¹2-X,1-Y,1-Z; ²1-X,1-Y,1-Z; ³-1+X,1+Y,-1+Z; ⁴-1+X,+Y,+Z; ⁵2-X,-Y,1-Z; ⁶-X,1-Y,-Z; ⁷1-X,-Y,1-Z; ⁸-1+X,+Y,-1+Z

Figure S1. Molecular structure of DNAT (1) and its labeling scheme.

Figure S2. The packing diagram of compound 1 viewed along *c* axis.

Figure S3. Molecular structure of $Li_2(H_2O)_4(DNAT)$ (2) and its labeling scheme.

Figure S4. The packing diagram of compound 2 viewed along *a* axis.

Figure S5. Molecular structure of Na₂(H₂O)₃(DNAT) (3) and its labeling scheme.

Figure S6. The packing diagram of compound 3 viewed along *b* axis.

Figure S7. Molecular structure of $K_2(H_2O)(DNAT)$ (4) and its labeling scheme.

Figure S8. The packing diagram of compound 4 viewed along *c* axis.

Figure S9. Molecular structure of Rb₂(DNAT) (5) and its labeling scheme.

Figure S10. The packing diagram of compound 5 viewed along *a* axis.

Figure S11. Molecular structure of $Cs_2(DNAT)$ (6) and its labeling scheme.

Figure S12. The packing diagram of compound 6 viewed along *a* axis.

Figure S13. DSC curve of DNAT (1).

Figure S14. DSC curve of $Li_2(H_2O)_4(DNAT)$ (2).

Figure S15. DSC curve of $Na_2(H_2O)_3(DNAT)$ (3).

Figure S16. DSC curve of $K_2(H_2O)(DNAT)$ (4).

Figure S17. DSC curve of Rb₂(DNAT) (5).

Figure S18. DSC curve of $Cs_2(DNAT)$ (6).

Figure S19. TG-DTG curve of DNAT (1).

Figure S20. TG-DTG curve of $Li_2(H_2O)_4(DNAT)$ (2).

Figure S21. TG-DTG curve of Na₂(H₂O)₃(DNAT) (3).

Figure S22. TG-DTG curve of $K_2(H_2O)(DNAT)$ (4).

Figure S23. TG-DTG curve of $Rb_2(DNAT)$ (5).

Figure S24. TG-DTG curve of Cs₂(DNAT) (6).

aamnaund	The first exothermic decomposition peak temperatures (°C)							
compound	5°C · min ⁻¹	10°C · min ⁻¹	15°C·min ⁻¹	20°C·min ⁻¹				
1	106.5	108.3	110.0	110.9				
2	245.1	250.4	252.6	254.2				
3	253.2	260.0	266.2	266.6				
4	243.5	253.7	261.4	264.4				
5	232.2	246.0	253.0	253.5				
6	230.2	240.9	251.9	260.3				

 Table S35. The first exothermic decomposition peak temperatures tested at different heating rates
 of compounds 1 to 6

Table S36. Results of 5 s bursting point tests

	1		2		3	3		4	
compound -	T/°C	τ/s	T/°C	τ/s	Т/°С	τ/s	Т/°С	τ/s	$-1_{5s}/-C$
1	133	6.2	136	5.3	145	2.9	147	2.4	136
2	303	6.2	306	5.5	308	4.7	310	4.2	307
3	296	6.8	298	5.6	300	4.5	302	4.1	299
4	317	7.0	320	6.1	325	4.7	328	3.6	323
5	269	8.2	279	6.4	290	4.1	295	2.5	282
6	303	5.8	305	5.5	308	4.6	311	3.9	306

Table S37. CCDC number of 1-6.

	1	2	3	4	5	6
CCDC number	1567025	1832599	1832596	1832597	1832598	1858066