Supporting Information

Comparison of Au-Ce and Au-Cu interaction over Au/CeO₂-CuO catalysts for preferential CO oxidation

Guojuan Jing,^{&a} Lu Zhang,^{&b} Yurong Ma,^a Jinfang Wu,^{*a} Qi wang,^a Guoqing Wu,^a Lihui Yan^a and Shanghong Zeng^{*a}

^a Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China

^b School of Chemistry, Beijing Institute of Technology, Beijing 102488, P. R. of China

([&] These authors contributed equally to this work and should be considered co-first authors)

(* To whom correspondence should be addressed. Emails: jfwu@imu.eud.cn;

zengshanghong@imu.edu.cn)

Fig. S1. SEM-EDS images of the Au_{0.04}/CeO₂-CuO catalyst.

Fig. S2. N₂ adsorption-desorption isotherms and pore size distribution curves of the CeO₂-CuO and Au/ CeO₂-CuO catalysts.

The N₂ adsorption-desorption isotherms correspond to type IV in the relative pressure (p/p_0) range of 0.5–1.0 for the as-prepared catalysts, suggesting that the catalysts possess the mesoporous structure. Moreover, the pore size distribution curves indicate that the pore sizes of the catalysts decrease with increasing Au loading.

XRD results for the repeated measurements:

We have redone the synthesis and measured XRD. The results are presented as follow.

Fig. S3 XRD patterns of the CeO₂-CuO and Au/CeO₂-CuO catalysts.

The crystallite sizes of CeO₂ are 5.0, 4.9, 4.7 and 4.4 nm, respectively. The Crystallite sizes of CuO are 16.9, 19.7, 21.6 and 22.4 nm, respectively. The results show that gold concentration indeed affects the sizes of CeO₂ and CuO. And the change in size is basically consistent with the trend described by XRD analysis.

Catalyst	Operating conditions	GHSV	T50	T100	CO ₂ selectivity	Width
		$(mL h^{-1} g^{-1}_{cat})$	(°C)	(°C)	in T ₁₀₀ (%)	
Au _{0.08} /CeO ₂ -CuO	1% CO, 1% O ₂ , 50%	40000	60	95	82	60
this work	H_2 in N_2					
Au-CuO _x /CeO ₂ ^{S1}	2 % CO, 2 % O ₂ ,	60000	55	100	50	80
	70 % H ₂ , in He					
Classical Cu _x O/CeO ₂ ^{S1}	2 % CO, 2 % O ₂ ,	60000	80	120	48	60
	70 % H ₂ , in He					
$Au_3Cu_1/CeO_2\text{-}R^{S2}$	1.0% CO, 1.0 % O ₂ ,	240000	50	125	50	
	50% H ₂ in He					50
Au-Cu/SBA-15 ^{S3}	1% CO, 1% O ₂ , in	20000	0	25		
	He					
Au/CuO-CeO2 ^{S4}	1.33% CO, 1.33%	30000	28	50	63	30
	O ₂ , 65.33% H ₂ in He					

Table S1 Literature data for PROX reaction over the different catalysts

References

- S1 J. d. S. L. Fonseca, H. S. Ferreira, N. Bion, L. Pirault-Roy, M. d. C. Rangel, D. Duprez and F. Epron, Catal. Today, 2012, 180, 34-41.
- S2 X. M. Liao, W. Chu, X. Y. Dai and V. Pitchon, Appl. Catal. B: Environ., 2013, 142-143, 25-37.
- S3 X. Y. Liu , A. Q. Wang, L. Li, T. Zhang , C. Y. Mou and J. F. Lee, J. Catal., 2011, 278, 288–296.
- S4 D. S. Lee and Y. W. Chen, Int. J. Hydrogen Energy, 2016, 41, 3605-3612.