## **Supporting information**

## Ferroelectricity, ionic conductivity and structural paths for large cations migration in $Ca_{10.5-x}Pb_x(VO_4)_7$ single crystals, x = 1.9, 3.5, 4.9

Dina V. Deyneko, Daria A. Petrova, Sergey M. Aksenov, Sergey Yu. Stefanovich, Oksana V.

Baryshnikova, Stanislav S. Fedotov, Peter C. Burns, Miron B. Kosmyna, Aleksey N.

Shekhovtsov and Bogdan Lazoryak

| Crystal data                                      |                                                                                                   |                                                                   |                                                                     |  |  |  |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|--|--|--|
| Formula                                           | Ca <sub>8.6</sub> Pb <sub>1.9</sub> (VO <sub>4</sub> ) <sub>7</sub>                               | Ca <sub>7</sub> Pb <sub>3.5</sub> (VO <sub>4</sub> ) <sub>7</sub> | Ca <sub>5.6</sub> Pb <sub>4.9</sub> (VO <sub>4</sub> ) <sub>7</sub> |  |  |  |
| Formula weight (g)                                | 1534.7                                                                                            | 1813.1                                                            | 2043.2                                                              |  |  |  |
| Temperature (K)                                   | 120                                                                                               | 120                                                               | 120                                                                 |  |  |  |
| Cell setting                                      |                                                                                                   | Trigonal                                                          |                                                                     |  |  |  |
| Space group                                       | R3c                                                                                               | R3c                                                               | R3c                                                                 |  |  |  |
| Lattice Parameters                                |                                                                                                   |                                                                   |                                                                     |  |  |  |
| a (Å)                                             | 10.9220(2)                                                                                        | 10.9801(9)                                                        | 11.0594(1)                                                          |  |  |  |
| $c(\text{\AA})$                                   | 38.3133 (9)                                                                                       | 38.5568(1)                                                        | 38.8813(1)                                                          |  |  |  |
| $V(Å^3)$                                          | 3958.1(1)                                                                                         | 4025.7(3)                                                         | 4118.5(4)                                                           |  |  |  |
| Ζ                                                 | 6                                                                                                 | 6                                                                 | 6                                                                   |  |  |  |
| Dx (g cm <sup>-3</sup> )                          | 3.8632                                                                                            | 4.4874                                                            | 4.9429                                                              |  |  |  |
| Crystal size (mm)                                 | 0.24×0.22×0.15                                                                                    | 0.21×0.23×0.26                                                    | 0.35×0.30×0.28                                                      |  |  |  |
| Crystal form                                      | Anhedral grain                                                                                    |                                                                   |                                                                     |  |  |  |
| Crystal color                                     | Light Yellow                                                                                      | Pink                                                              | Red                                                                 |  |  |  |
| Data Collection                                   |                                                                                                   |                                                                   |                                                                     |  |  |  |
| Diffractometer                                    |                                                                                                   | Bruker Smart Apex I                                               | Ι                                                                   |  |  |  |
| Radiation; $\lambda$                              |                                                                                                   | Mo <i>K</i> <sub>α</sub> ; 0.71069                                |                                                                     |  |  |  |
| Absorption coefficient, $\mu$ (mm <sup>-1</sup> ) | 15.92                                                                                             | 25.737                                                            | 33.304                                                              |  |  |  |
| F(000)                                            | 4259                                                                                              | 4877                                                              | 5390                                                                |  |  |  |
| Data range $\theta(^{\circ})$ ;                   | 4.06 - 56.22                                                                                      | 2.39 - 30.69                                                      | 2.37-30.59                                                          |  |  |  |
|                                                   | -22 <h<25< td=""><td>-15<h<15,< td=""><td>-15<h<15< td=""></h<15<></td></h<15,<></td></h<25<>     | -15 <h<15,< td=""><td>-15<h<15< td=""></h<15<></td></h<15,<>      | -15 <h<15< td=""></h<15<>                                           |  |  |  |
| Limits h, k, l                                    | -25 <k<24,< td=""><td>-15<k<15,< td=""><td>-15<k<15,< td=""></k<15,<></td></k<15,<></td></k<24,<> | -15 <k<15,< td=""><td>-15<k<15,< td=""></k<15,<></td></k<15,<>    | -15 <k<15,< td=""></k<15,<>                                         |  |  |  |
|                                                   | -78 <l<88< td=""><td>-54&lt;<i>l</i>&lt;54</td><td>-54&lt;1&lt;54</td></l<88<>                    | -54< <i>l</i> <54                                                 | -54<1<54                                                            |  |  |  |
| No. of measured reflections                       | 69638                                                                                             | 16900                                                             | 17106                                                               |  |  |  |
| Total reflections/unique                          | 5507 / 3621                                                                                       | 1388 / 1294                                                       | 1414 / 1208                                                         |  |  |  |
| Criterion for observed reflections                | $I > 2\sigma(I)$                                                                                  |                                                                   |                                                                     |  |  |  |
| Refinement                                        |                                                                                                   |                                                                   |                                                                     |  |  |  |
| Refinement on                                     | Full-matrix least squ                                                                             | uares on F                                                        |                                                                     |  |  |  |
| $R_1$ , $wR_2$ (all reflection)                   | 4.55 / 3.68                                                                                       | 4.56 / 3.47                                                       | 4.72 / 3.78                                                         |  |  |  |

**Table S1.** Structural parameters for single crystals  $Ca_{10-x}Pb_x(VO_4)_7$ .

| No. of refinement                                                                                                                    | 199                                 | 163                                                | 223                                    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------|----------------------------------------|--|--|--|
| parameters                                                                                                                           | 177                                 | 100                                                |                                        |  |  |  |
| Weight scheme                                                                                                                        | $1/(\sigma^2  F  + 0.0001F^2)$      | $1/(\sigma^2  F  + 0.001225F^2)$                   | $1/(\sigma^2  F  + 0.0009F^2)$         |  |  |  |
| Max./min. residual $e$ density, $(e^{A^{-3}})$                                                                                       | -2.34 / 1.91                        | -1.46 / 1.30                                       | -1.62 / 2.89                           |  |  |  |
| GOF (Goodness of fit)                                                                                                                | 1.03                                | 1.01                                               | 1.04                                   |  |  |  |
| Note: $R_1 = \sum [ F_{obs}  -  F_{calc} ]$                                                                                          | $\sum  F_{obs} ; wR_2 = \{\sum [w]$ | $(F_{\rm obs}^2 - F_{\rm calc}^2)^2] / \sum [w]^2$ | $(F_{\rm obs}^2)^2$ ] $^{1/2}$ ; GOF = |  |  |  |
| $\{\sum [w(F_{obs}^2 - F_{calc}^2)] / (n - p)\}^{1/2}$ where <i>n</i> is a number of reflections and <i>p</i> is a number of refined |                                     |                                                    |                                        |  |  |  |
| parameters.                                                                                                                          |                                     |                                                    |                                        |  |  |  |

**Table S2**. Structural parameters for  $Ca_{8.6}Pb_{1.9}(VO_4)_7$  (1),  $Ca_7Pb_{3.5}(VO_4)_7$  (2) and  $Ca_{5.6}Pb_{4.9}(VO_4)_7$  (3) single crystals.

| Site                           | Mult. | Sample | x          | у           | Z           | $U_{ m eq}, { m \AA}^2$ | Site occupancy                                                                            |
|--------------------------------|-------|--------|------------|-------------|-------------|-------------------------|-------------------------------------------------------------------------------------------|
|                                |       | 1      | 0.7208(8)  | -0.15557(8) | -0.0668(9)  | 0.0134(19)              | Ca <sup>2+</sup>                                                                          |
| <i>M</i> 1                     | 18    | 2      | 0.0571(2)  | 0.5254(2)   | -0.4024(2)  | 0.0116(7)               | $\begin{array}{c} 0.942(5) \text{ Ca}^{2+} + 0.058(5) \\ \text{Pb}^{2+} \end{array}$      |
|                                |       | 3      | -0.2762(4) | -0.1424(3)  | -0.0685(3)  | 0.0141(6)               | $\begin{array}{c} 0.750(6) \text{ Ca}^{2+} + 0.250(6) \\ \text{Pb}^{2+} \end{array}$      |
|                                |       | 1      | 0.8636(7)  | -0.27597(8) | 0.0688(9)   | 0.0127(18)              | Ca <sup>2+</sup>                                                                          |
| М2                             | 18    | 2      | 0.2801(2)  | 0.1264(2)   | -0.4340(2)  | 0.0207(7)               | $\begin{array}{c} 0.900(2) \ \mathrm{Ca}^{2+} + 0.100(1) \\ \mathrm{Pb}^{2+} \end{array}$ |
|                                |       | 3      | -0.1293(3) | -0.2828(4)  | 0.0665(3)   | 0.0138(7)               | $\begin{array}{c} 0.785(5) \text{ Ca}^{2+} + 0.215(5) \\ \text{Pb}^{2+} \end{array}$      |
|                                |       | 1      | 0.5238(8)  | 0.0680(9)   | 0.0069(9)   | 0.0136(12)              | 0.549(7) Ca <sup>2+</sup>                                                                 |
| <i>M</i> 3 <sub>1</sub>        | 18    | 2      | 0.7915(2)  | 0.1868(2)   | -0.3422(2)  | 0.0267(2)               | $0.152(8) Ca^{2+} + 0.848(8) Pb^{2+}$                                                     |
|                                |       | 3      | -0.5229(2) | -0.0637(4)  | -0.0083(3)  | 0.0302(6)               | 0.921(7) Pb <sup>2+</sup>                                                                 |
| M3                             | 19    | 1      | 0.5172(2)  | 0.0598(3)   | 0.0063(9)   | 0.0308(4)               | 0.451(3) Pb <sup>2+</sup>                                                                 |
| M3 <sub>2</sub>                | 18    | 3      | 0.5363(4)  | 0.0696(7)   | 0.0045(8)   | 0.053(15)               | 0.079(7) Pb <sup>2+</sup>                                                                 |
|                                |       | 1      | 0.3333(2)  | -0.3333(3)  | -0.0198(9)  | 0.0444(19)              | 0.265(5) Pb <sup>2+</sup>                                                                 |
| $M4_1$                         | 6     | 2      | 0.0571(2)  | 0.5254(2)   | -0.4024(2)  | 0.0116(7)               | 0.058(1) Pb <sup>2+</sup>                                                                 |
|                                |       | 3      | -0.3333(3) | 0.3333(5)   | 0.0150(3)   | 0.097(2)                | 0.500(2) Pb <sup>2+</sup>                                                                 |
| MA                             | 6     | 1      | 0.3333(2)  | -0.333333   | -0.0103(9)  | 0.054(2)                | 0.127(5) Pb <sup>2+</sup>                                                                 |
| <i>M</i> <b>4</b> <sub>2</sub> | 0     | 2      | 0          | 0           | -0.3351(13) | 0.0220(2)               | 0.126(3) Pb <sup>2+</sup>                                                                 |
| MA.                            | 18    | 1      | 0.2571(3)  | -0.3540(18) | -0.0234(10) | 0.041(5)                | 0.035(7) Pb <sup>2+</sup>                                                                 |
| 111-13                         | 10    | 2      | -0.0777(2) | -0.1020(2)  | -0.3114(13) | 0.0080(3)               | 0.019(7) Pb <sup>2+</sup>                                                                 |
|                                |       | 1      | 0          | 0           | 0           | 0.0185(2)               |                                                                                           |
| M5                             | 6     | 2      | 0          | 0           | 0           | 0.0126(8)               | $Ca^{2+}$                                                                                 |
|                                |       | 3      | 0          | 0           | 0           | 0.0130(10)              |                                                                                           |
|                                |       | 1      | 0.6667(2)  | 0.3333(2)   | 0.0665(9)   | 0.0114(17)              |                                                                                           |
| V1                             | 6     | 2      | 0.6667(1)  | 0.3333(4)   | -0.4009(2)) | 0.0069(6)               | V                                                                                         |
|                                |       | 3      | -0.6666(6) | -0.3333(3)  | -0.0673(4)  | 0.0155(10)              |                                                                                           |
|                                |       | 1      | 0.8057(7)  | 0.1505(6)   | -0.0330(9)  | 0.0111(16)              |                                                                                           |
| V2                             | 18    | 2      | 0.17424(2) | 0.3167(2)   | -0.3670(2)  | 0.0087(6)               | V                                                                                         |
|                                |       | 3      | -0.1895(5) | 0.1611(5)   | -0.0331(3)  | 0.0120(9)               |                                                                                           |
| V3                             |       | 1      | 0.1930(8)  | -0.15921(7) | 0.0326(9)   | 0.0150(19)              |                                                                                           |
|                                | 18    | 2      | 0.4855(2)  | 0.0095(2)   | -0.3002(2)  | 0.0062(5)               | V                                                                                         |
|                                |       | 3      | -0.3445(7) | -0.1884(5)  | 0.0341(2)   | 0.0095(8)               |                                                                                           |
|                                |       | 1      | 0.6667(3)  | 0.3333(2)   | 0.0218(9)   | 0.0263(15)              |                                                                                           |
| 011                            | 6     | 2      | 0.6667(3)  | 0.3333(3)   | -0.3559(12) | 0.016(3)                | О                                                                                         |
|                                |       | 3      | -0.6667(6) | -0.3333(3)  | -0.0228(5)  | 0.009(3)                |                                                                                           |
| 012                            | 18    | 1      | 0.5207(3)  | 0.3416(4)   | 0.0794(9)   | 0.0258(11)              | 0                                                                                         |

|     |    | _ |            |            |            |            |   |
|-----|----|---|------------|------------|------------|------------|---|
|     |    | 2 | 0.6733(8)  | 0.4857(8)  | -0.4133(2) | 0.022(3)   |   |
|     |    | 3 | -0.5211(1) | -0.3388(2) | -0.0795(5) | 0.034(5)   |   |
|     |    | 1 | 0.8066(3)  | 0.1757(4)  | 0.0111(9)  | 0.0214(10) |   |
| O21 | 18 | 2 | 0.1879(2)  | 0.2864(2)  | -0.3233(2) | 0.053(6)   | О |
|     |    | 3 | -0.2250(2) | 0.1534(2)  | 0.0096(4)  | 0.063(9)   |   |
|     |    | 1 | 0.8862(5)  | 0.3117(4)  | -0.0521(9) | 0.0355(16) |   |
| O22 | 18 | 2 | 0.0064(9)  | 0.2308(2)  | -0.3810(2) | 0.040(4)   | О |
|     |    | 3 | -0.1030(2) | 0.3252(1)  | -0.0476(4) | 0.045(7)   |   |
|     |    | 1 | 0.6353(4)  | 0.0385(4)  | -0.0449(9) | 0.0269(13) |   |
| O23 | 18 | 2 | 0.2880(8)  | 0.2774(7)  | -0.3881(2) | 0.014(3)   | О |
|     |    | 3 | -0.3434(1) | 0.0474(1)  | -0.0537(4) | 0.018(4)   |   |
|     |    | 1 | 0.9029(3)  | 0.0725(3)  | -0.0435(9) | 0.0185(9)  |   |
| O24 | 18 | 2 | 0.2418(8)  | 0.4920(9)  | -0.3742(2) | 0.022(3)   | О |
|     |    | 3 | -0.0845(2) | 0.0878(2)  | -0.0399(5) | 0.031(4)   |   |
|     |    | 1 | 0.3460(3)  | -0.0432(3) | 0.0551(9)  | 0.0173(9)  |   |
| O31 | 18 | 2 | 0.4053(7)  | -0.1659(7) | -0.2898(2) | 0.011(2)   | О |
|     |    | 3 | -0.4182(2) | -0.1031(2) | 0.0529(4)  | 0.034(6)   |   |
|     |    | 1 | 0.2455(7)  | -0.1418(5) | -0.0100(9) | 0.050(2)   |   |
| O32 | 18 | 2 | 0.3764(9)  | 0.0695(8)  | -0.2868(2) | 0.018(3)   | О |
|     |    | 3 | -0.4032(1) | -0.3537(1) | 0.0486(4)  | 0.027(4)   |   |
|     |    | 1 | 0.0821(3)  | -0.0930(4) | 0.0410(9)  | 0.0297(12) |   |
| O33 | 18 | 2 | 0.6463(2)  | 0.0881(2)  | -0.2802(2) | 0.029(3)   | О |
|     |    | 3 | -0.1697(2) | -0.0937(9) | 0.0441(5)  | 0.014(3)   |   |
|     |    | 1 | 0.1110(6)  | -0.3307(4) | 0.0459(9)  | 0.050(2)   |   |
| O34 | 18 | 2 | 0.5118(8)  | 0.0384(2)  | -0.3436(2) | 0.017(3)   | О |
|     |    | 3 | -0.3706(2) | -0.1936(2) | -0.0088(4) | 0.034(6)   |   |

| Site                    | Sample | <i>U</i> <sub>11</sub> | <i>U</i> <sub>22</sub> | U <sub>33</sub> | <i>U</i> <sub>12</sub> | <i>U</i> <sub>13</sub> | <i>U</i> <sub>23</sub> |
|-------------------------|--------|------------------------|------------------------|-----------------|------------------------|------------------------|------------------------|
|                         | 1      | 0.0139(2)              | 0.0130(2)              | 0.0116(2)       | 0.0053(2)              | -0.0030(19)            | -0.0006(19)            |
| <i>M</i> 1              | 2      | 0.0136(9)              | 0.0140(9)              | 0.0081(10)      | 0.0075(6)              | -0.0001(5)             | -0.0005(5)             |
|                         | 3      | 0.0157(8)              | 0.0154(8)              | 0.0138(8)       | 0.0097(6)              | -0.0006(5)             | 0.0005(6)              |
|                         | 1      | 0.0112(2)              | 0.0140(2)              | 0.0117(2)       | 0.0055(19)             | -0.0008(17)            | -0.0004(18)            |
| М2                      | 2      | 0.0220(8)              | 0.0232(8)              | 0.0177(8)       | 0.0119(7)              | -0.0048(6)             | -0.0041(6)             |
|                         | 3      | 0.0141(8)              | 0.0158(9)              | 0.0138(9)       | 0.0092(7)              | 0.0017(9)              | 0.0032(6)              |
|                         | 1      | 0.0091(11)             | 0.029(2)               | 0.0064(11)      | 0.0122(13)             | 0.0079(7)              | 0.0091(8)              |
| $M3_1$                  | 2      | 0.0243(3)              | 0.0232(3)              | 0.0164(3)       | -0.0002(2)             | -0.0020(3)             | -0.0090(3)             |
|                         | 3      | 0.0229(5)              | 0.0488(10)             | 0.0242(5)       | 0.0218(6)              | 0.0080(7)              | 0.0066(6)              |
| M32                     | 1      | 0.0288(5)              | 0.0462(6)              | 0.0250(4)       | 0.0246(5)              | 0.0103(3)              | 0.0085(4)              |
| 11102                   | 3      | 0.036(9)               | 0.11(3)                | 0.035(8)        | 0.051(14)              | 0.024(6)               | 0.040(11)              |
|                         | 1      | 0.053(3)               | 0.053(3)               | 0.0271(14)      | 0.0265(14)             | 0                      | 0                      |
| $M4_1$                  | 2      | 0.0538(19)             | 0.0538(19)             | 0.034(3)        | 0.0269(9)              | 0                      | 0                      |
|                         | 3      | 0.082(2)               | 0.082(2)               | 0.126(5)        | 0.0412(11)             | 0                      | 0                      |
| <i>M</i> 4 <sub>2</sub> | 1      | 0.051(10)              | 0.019(3)               | 0.036(5)        | 0.004(4)               | 0.013(6)               | -0.004(2)              |
| 111-12                  | 2      | 0.014(2)               | 0.014(2)               | 0.038(5)        | 0.0068(10)             | 0                      | 0                      |
| M4.                     | 1      | 0.0245(15)             | 0.0245(15)             | 0.114(7)        | 0.0122(8)              | 0                      | 0                      |
| 111-3                   | 2      | 0.023(2)               | 0.013(2)               | 0.026(5)        | 0.0071(10)             | 0                      |                        |
|                         | 1      | 0.0235(3)              | 0.0235(3)              | 0.0085(4)       | 0.0118(16)             | 0                      | 0                      |
| М5                      | 2      | 0.0175(10)             | 0.0175(10)             | 0.0027(13)      | 0.0088(5)              | 0                      | 0                      |
|                         | 3      | 0.0167(12)             | 0.0167(12)             | 0.0058(16)      | 0.0083(6)              | 0                      | 0                      |
|                         | 1      | 0.0105(20)             | 0.0105(20)             | 0.0131(3)       | 0.0052(10)             | 0                      | 0                      |
| V1                      | 2      | 0.0068(7)              | 0.0068(7)              | 0.0071(13)      | 0.0034(4)              | 0                      | 0                      |
|                         | 3      | 0.0109(11)             | 0.0109(11)             | 0.025(2)        | 0.0054(5)              | 0                      | 0                      |
|                         | 1      | 0.0135(2)              | 0.0121(19)             | 0.0099(18)      | 0.0083(16)             | -0.0006(15)            | 0.0008(15)             |
| V2                      | 2      | 0.0068(7)              | 0.0102(7)              | 0.0062(7)       | 0.0020(6)              | -0.0013(6)             | -0.0057(6)             |
|                         | 3      | 0.0155(12)             | 0.0115(11)             | 0.0081(10)      | 0.0060(10)             | -0.0001(12)            | 0.0030(12)             |
|                         | 1      | 0.0208(3)              | 0.0114(2)              | 0.0129(2)       | 0.0080(2)              | -0.0039(2)             | 0.0006(17)             |
| V3                      | 2      | 0.0085(7)              | 0.0042(7)              | 0.0036(7)       | 0.0013(6)              | -0.0008(6)             | -0.0002(5)             |
|                         | 3      | 0.0047(10)             | 0.0142(11)             | 0.0070(10)      | 0.0027(8)              | 0.0017(8)              | 0.0019(12)             |
| 011                     | 1      | 0.0313(19)             | 0.0313(19)             | 0.016(2)        | 0.0156(10)             | 0                      | 0                      |

**Table S3**. Anisotropic atomic displacement parameters  $(U_{ij}, Å^2)$  for Ca<sub>8.6</sub>Pb<sub>1.9</sub>(VO<sub>4</sub>)<sub>7</sub> (1), Ca<sub>7.0</sub>Pb<sub>3.5</sub>(VO<sub>4</sub>)<sub>7</sub> (2) and Ca<sub>5.6</sub>Pb<sub>4.9</sub>(VO<sub>4</sub>)<sub>7</sub> (3) single crystals.

|     | 2 | 0.019(4)   | 0.019(4)   | 0.009(6)   | 0.009(2)   | 0           | 0           |
|-----|---|------------|------------|------------|------------|-------------|-------------|
|     | 3 | 0.025(4)   | 0.025(5)   | 0.019(4)   | 0.0188(10) | 0           | 0           |
|     | 1 | 0.0212(13) | 0.0203(13) | 0.0400(18) | 0.0135(12) | 0.0069(12)  | -0.0054(12) |
| 012 | 2 | 0.020(4)   | 0.016(4)   | 0.035(5)   | 0.013(3)   | 0.013(3)    | 0.014(3)    |
|     | 3 | 0.019(5)   | 0.034(6)   | 0.053(7)   | 0.015(5)   | -0.006(5)   | -0.017(6)   |
|     | 1 | 0.0232(13) | 0.0236(13) | 0.0110(10) | 0.0069(11) | -0.0011(9)  | 0.0004(9)   |
| O21 | 2 | 0.026(5)   | 0.093(11)  | 0.012(4)   | 0.009(6)   | -0.008(4)   | -0.007(5)   |
|     | 3 | 0.106(15)  | 0.049(9)   | 0.025(7)   | 0.031(10)  | 0.015(8)    | 0.000(6)    |
|     | 1 | 0.050(2)   | 0.0256(17) | 0.0291(16) | 0.0180(17) | 0.0015(16)  | 0.0132(13)  |
| O22 | 2 | 0.009(4)   | 0.066(7)   | 0.017(4)   | -0.001(4)  | 0.001(3)    | -0.020(4)   |
|     | 3 | 0.095(11)  | 0.024(6)   | 0.011(5)   | 0.026(7)   | -0.018(6)   | -0.004(4)   |
|     | 1 | 0.0166(12) | 0.041(2)   | 0.0212(13) | 0.0133(13) | -0.0089(10) | -0.0105(13) |
| O23 | 2 | 0.026(4)   | 0.012(3)   | 0.012(3)   | 0.017(3)   | 0.001(3)    | 0.001(2)    |
|     | 3 | 0.008(4)   | 0.036(6)   | 0.012(4)   | 0.011(4)   | 0.008(3)    | 0.014(4)    |
|     | 1 | 0.0165(11) | 0.0189(12) | 0.0257(13) | 0.0131(10) | -0.0015(9)  | -0.0035(9)  |
| O24 | 2 | 0.021(4)   | 0.018(4)   | 0.035(5)   | 0.015(3)   | -0.012(3)   | -0.010(4)   |
| _   | 3 | 0.004(4)   | 0.026(6)   | 0.053(8)   | 0.001(4)   | -0.001(5)   | 0.014(5)    |
|     | 1 | 0.0152(10) | 0.0229(12) | 0.0165(10) | 0.0116(10) | -0.0045(8)  | -0.0017(9)  |
| 031 | 2 | 0.016(3)   | 0.002(3)   | 0.011(3)   | 0.001(2)   | -0.004(2)   | -0.003(2)   |
|     | 3 | 0.038(7)   | 0.047(7)   | 0.036(7)   | 0.037(6)   | 0.002(6)    | -0.003(6)   |
|     | 1 | 0.091(4)   | 0.034(2)   | 0.0140(14) | 0.022(3)   | -0.0091(19) | -0.0021(13) |
| O32 | 2 | 0.027(4)   | 0.021(4)   | 0.016(4)   | 0.020(3)   | 0.001(3)    | -0.002(3)   |
|     | 3 | 0.034(6)   | 0.018(5)   | 0.013(5)   | 0.000(5)   | -0.004(4)   | 0.000(4)    |
|     | 1 | 0.0157(12) | 0.0254(15) | 0.048(2)   | 0.0101(12) | 0.0001(12)  | 0.0181(14)  |
| 033 | 2 | 0.019(4)   | 0.033(5)   | 0.023(4)   | 0.004(3)   | -0.014(3)   | -0.007(4)   |
| _   | 3 | 0.008(4)   | 0.013(4)   | 0.014(4)   | 0.000(3)   | 0.002(3)    | 0.002(4)    |
|     | 1 | 0.082(4)   | 0.0149(14) | 0.0321(19) | 0.0089(18) | -0.019(2)   | 0.0072(13)  |
| O34 | 2 | 0.024(4)   | 0.023(4)   | 0.006(3)   | 0.013(3)   | 0.005(3)    | 0.001(3)    |
|     | 3 | 0.047(8)   | 0.038(7)   | 0.008(5)   | 0.015(6)   | -0.010(5)   | -0.005(5)   |

| Dand                    |                 | 1        |          | 2        |    | 3        |          |
|-------------------------|-----------------|----------|----------|----------|----|----------|----------|
| DOIL                    | ł               | Са       | Pb       | Са       | Pb | Са       | Pb       |
| <i>M</i> 1              | 012             | 2.412(2) |          | 2.508(7) |    | 2.520(6) |          |
|                         | O31             | 2.362(3) |          |          |    | 2.310(2) |          |
|                         | O34             | 2.390(4) |          | 2.441(7) |    | 2.491(5) |          |
|                         | O32             | 2.440(4) |          | 2.380(6) |    | 2.378(2) |          |
|                         | O33             |          |          | 2.281(5) |    |          |          |
|                         | O24             | 2.502(1) |          | 2.4846   |    | 2.525(1) |          |
|                         | O24'            | 2.450(2) |          | 2.6061   |    | 2.610(6) |          |
|                         | O23             | 2.833(2) |          | 2.564(7) |    | 2.617(2) |          |
|                         | O22             | 2.844(1) |          | 3.107(0) |    | 3.038(4) |          |
|                         | < <i>M</i> 1-O> | 2.530    |          | 2.547    |    | 2.561    |          |
| <i>M</i> 2              | O21             | 2.380(4) |          | 2.380(6) |    | 2.410(2) |          |
|                         | O23             | 2.410(4) |          | 2.401(5) |    | 2.418(2) |          |
|                         | O22             | 2.321(4) |          | 2.411(6) |    | 2.439(2) |          |
|                         | 012             | 2.506(2) |          | 2.440(2) |    | 2.455(5) |          |
|                         | O31             | 2.524(1) |          | 2.444(5) |    | 2.816(3) |          |
|                         | 031'            |          |          | 2.518(1) |    |          |          |
|                         | O33             | 2.460(6) |          | 2.821(1) |    | 2.503(2) |          |
|                         | 033'            | 2.587(1) |          |          |    | 2.536(1) |          |
|                         | O34             | 3.169(4) |          |          |    |          |          |
|                         | O32             |          |          | 2.808(5) |    | 2.811(1) |          |
|                         | < <i>M</i> 2-O> | 2.545    |          | 2.488    |    | 2.511    |          |
| <i>M</i> 3 <sub>1</sub> | O23             | 2.431(4) | 2.420(4) | 2.450(5) |    |          | 2.475(4) |
|                         | O31             | 2.509(6) | 2.481(1) |          |    |          | 2.774(4) |
|                         | O11             | 2.576(2) | 2.658(2) | 2.637(1) |    |          | 2.645(1) |
|                         | O34             | 2.633(2) | 2.612(1) | 2.662(2) |    |          | 2.706(1) |
|                         | O34'            |          |          | 2.742(1) |    |          | 2.734(2) |
|                         | O22             | 2.655(1) | 2.636(1) | 2.627(1) |    |          | 2.650(1) |
|                         | O21             | 2.659(1) | 2.672(1) | 2.898(2) |    |          | 3.032(1) |
|                         | O21'            | 2.705(1) | 2.762(2) |          |    |          |          |
|                         | O32             | 2.819(1) | 2.741(2) | 2.573(1) |    |          | 2.645(1) |
|                         | O33             |          |          | 2.775(4) |    |          |          |

Table S4. The main interatomic distances, Å for (1), (2) and (3) crystals.

|                         | 012                           |          |          |          |          |          | 3.117(3) |
|-------------------------|-------------------------------|----------|----------|----------|----------|----------|----------|
|                         | < <i>M</i> 3-O>               | 2.623    |          | 2.670    |          |          | 2.753    |
| <i>M</i> 3 <sub>2</sub> | O23                           | 2.420(4) |          |          |          | 2.330(4) |          |
|                         | O31                           | 2.481(1) |          |          |          | 2.898(3) |          |
|                         | 011                           | 2.658(2) |          |          |          |          |          |
|                         | O34                           | 2.612(1) |          |          |          | 3.573(7) |          |
|                         | O34'                          |          |          |          |          | 3.421(7) |          |
|                         | O22                           | 2.636(1) |          |          |          | 2.470(5) |          |
|                         | O21                           | 2.672(1) |          |          |          | 2.331(6) |          |
|                         | O21'                          | 2.762(2) |          |          |          | 3.010(7) |          |
|                         | O32                           | 2.741(2) |          |          |          | 2.469(6) |          |
|                         | O33                           |          |          |          |          |          |          |
|                         | 012                           |          |          |          |          | 3.517(5) |          |
|                         | < <i>M</i> 3 <sub>2</sub> -O> | 2.623    |          |          |          | 2.961    |          |
| М5                      | O33 × 3                       | 2.290(3) |          | 2.320(5) |          | 2.337(2) |          |
|                         | $O24 \times 3$                | 2.311(3) |          | 2.290(5) |          | 2.292(2) |          |
|                         | < <i>M</i> 5-O>               | 2.301    |          | 2.305    |          | 2.314    |          |
| <i>M</i> 4 <sub>1</sub> | O32× 3                        |          | 2.728(4) |          |          |          |          |
|                         | O12× 3                        |          | 3.062(1) |          | 3.136(2) |          |          |
|                         | O21× 3                        |          |          |          | 2.781(5) |          |          |
|                         | < <i>M</i> 4 <sub>1</sub> –O> |          | 2.900    |          | 2.959    |          |          |
| <i>M</i> 4 <sub>2</sub> | O32 × 3                       |          | 2.703(1) |          |          |          |          |
|                         | $O34 \times 3$                |          | 3.256(3) |          |          |          |          |
|                         | O21× 3                        |          |          |          | 2.8044   |          | 2.7971   |
|                         | O22× 3                        |          |          |          | 3.0629   |          |          |
|                         | O12× 3                        |          |          |          |          |          | 3.2505   |
|                         | < <i>M</i> 4 <sub>2</sub> -O> |          | 2.980    |          | 2.934    |          | 3.024    |
| <i>M</i> 4 <sub>3</sub> | O32                           |          | 2.438(1) |          | 2.954(4) |          | 2.468(5) |
|                         | O32'                          |          | 2.505(1) |          |          |          |          |
|                         | O12                           |          | 2.754(1) |          | 2.787(2) |          |          |
|                         | 012'                          |          | 2.915(4) |          | 2.977(1) |          |          |
|                         | O23                           |          | 3.106(4) |          |          |          | 2.694(1) |
|                         | O34                           |          | 3.172(2) |          |          |          | 3.421(1) |
|                         | O21                           |          |          |          | 2.356(1) |          | 2.331(2) |
|                         |                               |          |          | 7        |          |          |          |

|    | O21'                          |          | 2.582(2) | 3.010(4) |
|----|-------------------------------|----------|----------|----------|
|    | O22                           |          | 3.094(2) | 2.470(1) |
|    | O31                           |          |          | 2.898(2) |
|    | < <i>M</i> 4 <sub>3</sub> –O> | 2.815    | 2.792    | 2.756    |
| V1 | 011                           | 1.710(5) | 1.740(7) | 1.730(3) |
|    | $O12 \times 3$                | 1.714(2) | 1.710(2) | 1.708(2) |
|    | <v1-0></v1-0>                 | 1.713    | 1.725    | 1.714    |
| V2 | O24                           | 1.708(2) | 1.704(2) | 1.737(2) |
|    | O21                           | 1.710(5) | 1.740(7) | 1.701(2) |
|    | O23                           | 1.701(2) | 1.721(3) | 1.727(2) |
|    | O22                           | 1.690(2) | 1.680(2) | 1.671(2) |
|    | <v2–o></v2–o>                 | 1.702    | 1.711    | 1.709    |
| V3 | O33                           | 1.723(2) | 1.710(3) | 1.721(2) |
|    | O31                           | 1.740(2) | 1.718(2) | 1.691(2) |
|    | O34                           | 1.701(2) | 1.701(7) | 1.702(2) |
|    | O32                           | 1.710(5) | 1.710(2) | 1.691(2) |
|    | <v3–o></v3–o>                 | 1.718    | 1.710    | 1.701    |



**Fig. S1.** Thermogravimetric curves for crystals (1), (2), and (3) in the heating (1, 2, 3)-cooling (1', 2', 3') circles.



Fig. S2. The difference of electron density map around the *M*4-site in the structure of crystals (1), (2), and (3). The positive electron density is indicated by solid lines and the negative electron density is designated by dashed lines. Contour intervals are  $0.1 e^{A^{-3}}$ .



**Fig. S3.** Occupancy of the M(1-4) site by Ca<sup>2+</sup> and Pb<sup>2+</sup> in the crystal structures of (1), (2) and (3) crystals.



**Fig. S4.** Complex impedance plot of  $Ca_{5.6}Pb_{4.9}(VO_4)_7$  at selected temperatures, demonstrating absence of noticeable electronic contribution. The total electric conductivity values for the sample at 680, 720 and 810 K corresponds to (0. 23; 0.6; 2.4) 10<sup>-3</sup>  $\Omega^{-1}$ cm<sup>-1</sup>, respectively.