Preparation and characterization for multicomponent crystals of the

antidiabetic drug gliquidone based on crystal engineering

Lina Jia[†], Yang Yu[†], Mengwei Wang[†], Hanzhi Ouyang[†] and Junbo Gong^{*, †, ‡, §}

[†] State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China

[‡] Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin 300072, P. R. China

§ Key Laboratory Modern Drug Delivery and High Efficiency in Tianjin University, Tianjin 300072, P. R. China

Contents of Supporting Information

Figure S1	2
Figure S2	3
Scheme S1	4
Table S1	5
Figure S3	6
Figure S4	7
Figure S5	8
Table S2	8
Figure S6	9
Figure S7	11
Figure S8	11
Figure S9	12
Figure S10	12
Figure S11	13
Figure S12	13
Figure S13	14
Figure S14	16

Figure S1. ¹H NMR data recorded in DMSO-*d*₆ solution for GQD, salt 1, salt 2 and salt 3. The ¹H spectra were obtained using a Bruker Advance III NMR spectrometer operating at 400 MHz. The proton transfer from GQD can clearly be seen from δ_a , δ_b , δ_c , δ_d , δ_e and δ_f in (a), the ratio of GQD and PPZ can be seen from δ_f , 2.94 (t, 2H, J = 9 Hz) and δ_g , 2.89 (m, 6H) in (b).

Figure S2. UV standard curve.

Scheme S1

Scheme S1. The structures of selected co-formers.

Table S1

Compound	Name	Formula	Donor	Acceptor	pKa 1	pKa 2
1	Piperazine	$C_4H_{10}N_2$	2	2	9.7	5.3
2	Nicotinic acid ^b	$C_6 H_5 NO_2$	1	3	4.9	2.0
3	Nicotinamide	$C_6H_6N_2O$	2	3	3.5	14.8
4	Isonicotinamide	$C_6H_6N_2O$	2	3	3.4	15.0
5	<i>p</i> -BenDibA ^{ab}	$C_6H_8B_2O_4$	4	4	8.3	
6	4-ASA	C ₇ H ₇ NO ₃	4	4	2.1	13.2
7	Paracetamol	C ₈ H ₉ NO ₂	2	3	1.7	9.9
8	ASA	$C_9H_8O_4$	1	4	3.5	
9	Catechol ^b	$C_6H_6O_2$	2	2	9.5	12.1
10	Phloroglucinol	$C_6H_6O_3$	3	3	8.0	9.2
11	Cytosine	$C_4H_5N_3O$	3	4	4.2	9.0
12	Uracil	$C_4H_4N_2O_2$	2	4	4.2	8.6
13	Succinic acid ^b	$C_4H_6O_4$	2	4	4.2	5.6
14	Urea	CH ₄ N ₂ O	4	3	0.1	
15	Alamine	$C_3H_7NO_2$	3	3	2.4	9.9
16	Maleic acid ^b	$C_4H_4O_4$	2	4	1.9	6.2
17	Theophylline ^b	$C_7H_8N_4O_2$	1	6	1.6	8.6
18	Saccharin	C ₇ H ₅ O ₃ NS	1	4	2.0	
19	Proline	C ₅ H ₉ NO ₂	2	3	2.0	10.6
20	Biuret ^a	$C_2H_5N_3O_2$	5	5	10.2	

Table S1. The parameters of the selected co-formers.

^a is predicted pka from SciFinder;

^b forms co-crystals with sulfonylureas;

p-BenDibA is 1,4-Phenylenebisboronic acid; 4-ASA is 4-Aminosalicylic acid; ASA is Amino salicylic acid.

Figure S3. PXRD patterns of the eutectics (The PXRD of co-former is not shown for clarity).

(a)

Figure S4. (a) PXRD patterns and (b) DSC profiles of the GQD-alanine eutectics with different ratios.

Figure S5. The comparations between PXRD generated from simulation and PXRD acquired from experiments.

Table S2

GQD	D–H···A	d (D–H) (Å)	$d(H \cdots A)(Å)$	$d(D \cdots A)(A)$	θ (DHA) (°)
	N_2 -H···O ₂	0.86	2.06	2.880(2)	158.8
	N_3 -H···O ₅	0.86	2.14	2.832(2)	137.5
	N ₃ -H…O ₅	0.86	2.53	3.246(2)	141.6
Salt S1a	D–H···A	d (D–H) (Å)	$d(H \cdots A)(Å)$	$d(D \cdots A)(A)$	θ (DHA) (°)
	C_{1P} -H···O ₅	0.99	2.38	3.155(2)	134.8
	N_{1P} -H···O ₆	0.91(2)	1.99(2)	2.760(2)	142.3(19)
	N_3 – H ···O _{1S}	0.90(2)	2.02(2)	2.888(2)	161(2)
	O_{1S} -H···O ₆	0.84	1.84	2.678(2)	171.1
	N_{1P} -H···N ₂	1.011(19)	1.747(19)	2.749(2)	170.8(18)
Salt S1b	D–H···A	d (D–H) (Å)	$d(H \cdots A)(Å)$	$d(D \cdots A)(A)$	θ (DHA) (°)
	C_{2P} -H···O ₅	0.99	2.42	3.164(4)	131.7
	N_{1P} -H···O ₅	0.97(3)	2.15(3)	2.953(3)	140(2)
	N_{1P} -H···O ₆	0.97(3)	2.06(3)	2.804(4)	133(2)

	N_3 – H ···O _{1S}	0.83(3)	2.14(3)	2.955(4)	170(4)
	O_{1S} – H ··· O_{6}	0.84	1.89	2.726(3)	171.2
	N_{1P} -H···N ₂	0.95(4)	1.84(4)	2.778(4)	167(3)
Salt S1c	D–H···A	d (D–H) (Å)	d (H…A) (Å)	$d(D\cdots A)(A)$	θ (DHA) (°)
	C_{2P} -H···O ₅	0.99	2.40	3.165(5)	133.2
	N_{1P} -H···O ₅	0.98(4)	2.14(4)	2.972(5)	142(3)
	N_{1P} -H···O ₆	0.98(4)	2.04(4)	2.798(5)	132(3)
	N_3 – H ···O _{1S}	0.87(5)	2.04(5)	2.892(5)	166(5)
	O_{1S} -H···O ₆	0.84	1.87	2.687(4)	165.5
	N_{1P} -H···N ₂	0.99(7)	1.83(7)	2.780(5)	161(5)
Salt S2	D–H···A	d (D–H) (Å)	$d(H \cdots A)(Å)$	$d(D\cdots A)(A)$	θ (DHA) (°)
	C_1 – H ··· O_3	0.93	2.57	3.446(3)	157.1
	N_{1P} -H···O ₅	0.91(3)	2.24(3)	2.910(2)	131(2)
	N_{1P} -H···O ₆	0.91(3)	1.97(3)	2.744(2)	142(2)
	N_3 – H ···O _{1S}	0.86	2.13	2.934(3)	154.7
	O_{1S} -H···O ₆	0.82	1.91	2.717(2)	168.4
	N_{1P} -H···N ₂	0.80(3)	2.04(3)	2.829(2)	169(2)

Figure S6. 2D H-bonding packing of various forms, (a) GQD, (b) salt S1a and (c) salt S2.

(b)

Figure S7. 1D chain in salts S1b (a) and S1c (b).

Figure S8. Comparisons of torsion angles between salts S1a, S1b and S1c.

Figure S9. Hirshfeld surface generated on d_{norm} parameters. Figure S10

Figure S10. Percentage contributions to the Hirshfeld surface area.

Figure S11. The overlaid TGA profiles of various forms.

Figure S12. Desolvation process using HSM. Here we take salt S2 as a represented example. The HSM photograph showed that when it desolvated by heating, the color of the birefringence of the crystal changed from 60°C to 85°C and finally melted at about 110°C.

Figure S13

(b)

Figure S13. The overlaid DSC and TGA profiles of (a) GQD, (b) salt 1, (c) salt 2 and (d) salt 3.

Figure S14

(b)

Figure S14. PXRD pattern of the powder after contact with dissolution media, (a) GQD, (b) salt 1, (c) salt 2 and (d) salt 3.