Diverse structural assemblies of U-shaped hydrazinyl-sulfonamides:

experimental and theoretical analysis of non-covalent interactions stabilizing

the solid state conformations

Hina Andleeb,^a Imtiaz Khan,^{a,b} Antonio Franconetti,^c Muhammad Nawaz Tahir,^d Jim Simpson,^e

Shahid Hameed,^{a,*} Antonio Frontera^{c,*}

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan ^bSchool of Chemistry & Manchester Institute of Biotechnology, The University of Manchester 131 Princess Street, Manchester M1 7DN, United Kingdom ^cDepartament de Química, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain ^dDepartment of Physics, University of Sargodha, Sargodha, Pakistan ^eDepartment of Chemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand

*Corresponding authors. E-mail: shameed@qau.edu.pk (S. Hameed); Tel.: +92-51-9064-2133;

Fax: +92-51-9064-2241; E-mail: toni.frontera@uib.es (A. Frontera); Tel: +34 971 259576; Fax:

+34 971 17 27 63

Table of contents	
Tables S1 to S10	Pages 2 to 18
Figures S1 to S3	Pages 19 to 20
NMR Spectra	Pages 21 to 25
Conformational analysis & Figure S4	Page 26

S(1)-O(2)	1.434(2)	N(1)-H(1)	0.79(4)
S(1)-O(1)	1.436(2)	C(7)-C(8)	1.536(3)
S(1)-N(1)	1.610(2)	C(7)-C(71)	1.542(4)
S(1)-C(1)	1.772(3)	C(7)-H(7)	0.9800
C(1)-C(6)	1.380(4)	C(71)-C(72)	1.521(4)
C(1)-C(2)	1.385(4)	C(71)-C(73)	1.522(4)
C(2)-C(3)	1.387(4)	C(71)-H(71)	0.9800
C(2)-H(2)	0.9300	C(72)-H(72A)	0.9600
C(3)-C(4)	1.389(6)	C(72)-H(72B)	0.9600
C(3)-H(3)	0.9300	C(72)-H(72C)	0.9600
C(4)-C(5)	1.389(5)	C(73)-H(73A)	0.9600
C(4)-C(41)	1.509(5)	C(73)-H(73B)	0.9600
C(41)-H(41A)	0.9600	C(73)-H(73C)	0.9600
C(41)-H(41B)	0.9600	C(8)-O(8)	1.227(3)
C(41)-H(41C)	0.9600	C(8)-N(2)	1.320(3)
C(5)-C(6)	1.378(5)	N(2)-N(3)	1.412(3)
C(5)-H(5)	0.9300	N(2)-H(2A)	0.80(4)
C(6)-H(6)	0.9300	N(3)-H(3A)	0.83(4)
N(1)-C(7)	1.460(3)	N(3)-H(3B)	0.74(5)
O(2)-S(1)-O(1)	119.65(14)	C(4)-C(3)-H(3)	119.5
O(2)-S(1)-N(1)	107.75(14)	C(5)-C(4)-C(3)	118.0(3)
O(1)-S(1)-N(1)	105.93(15)	C(5)-C(4)-C(41)	120.5(4)
O(2)-S(1)-C(1)	106.30(14)	C(3)-C(4)-C(41)	121.5(4)
O(1)-S(1)-C(1)	108.83(14)	C(4)-C(41)-H(41A)	109.5
N(1)-S(1)-C(1)	107.92(12)	C(4)-C(41)-H(41B)	109.5
C(6)-C(1)-C(2)	120.1(3)	H(41A)-C(41)-H(41B)	109.5
C(6)-C(1)-S(1)	120.2(2)	C(4)-C(41)-H(41C)	109.5
C(2)-C(1)-S(1)	119.6(2)	H(41A)-C(41)-H(41C)	109.5
C(1)-C(2)-C(3)	119.5(3)	H(41B)-C(41)-H(41C)	109.5
C(1)-C(2)-H(2)	120.2	C(6)-C(5)-C(4)	121.5(3)
C(3)-C(2)-H(2)	120.2	C(6)-C(5)-H(5)	119.2
C(2)-C(3)-C(4)	121.1(3)	C(4)-C(5)-H(5)	119.2
C(2)-C(3)-H(3)	119.5	C(5)-C(6)-C(1)	119.7(3)

 Table S1. Bond lengths [Å] and angles [°] for compound 5a.

C(5)-C(6)-H(6)	120.2	H(72A)-C(72)-H(72B)	109.5
C(1)-C(6)-H(6)	120.2	C(71)-C(72)-H(72C)	109.5
C(7)-N(1)-S(1)	122.22(19)	H(72A)-C(72)-H(72C)	109.5
C(7)-N(1)-H(1)	114(2)	H(72B)-C(72)-H(72C)	109.5
S(1)-N(1)-H(1)	116(2)	C(71)-C(73)-H(73A)	109.5
N(1)-C(7)-C(8)	109.7(2)	C(71)-C(73)-H(73B)	109.5
N(1)-C(7)-C(71)	109.5(2)	H(73A)-C(73)-H(73B)	109.5
C(8)-C(7)-C(71)	109.6(2)	С(71)-С(73)-Н(73С)	109.5
N(1)-C(7)-H(7)	109.3	H(73A)-C(73)-H(73C)	109.5
C(8)-C(7)-H(7)	109.3	H(73B)-C(73)-H(73C)	109.5
C(71)-C(7)-H(7)	109.3	O(8)-C(8)-N(2)	122.1(2)
C(72)-C(71)-C(73)	109.8(3)	O(8)-C(8)-C(7)	121.4(2)
C(72)-C(71)-C(7)	111.7(2)	N(2)-C(8)-C(7)	116.5(2)
C(73)-C(71)-C(7)	110.8(3)	C(8)-N(2)-N(3)	121.8(2)
C(72)-C(71)-H(71)	108.2	C(8)-N(2)-H(2A)	121(3)
C(73)-C(71)-H(71)	108.2	N(3)-N(2)-H(2A)	117(3)
C(7)-C(71)-H(71)	108.2	N(2)-N(3)-H(3A)	110(3)
C(71)-C(72)-H(72A)	109.5	N(2)-N(3)-H(3B)	102(4)
C(71)-C(72)-H(72B)	109.5	H(3A)-N(3)-H(3B)	120(5)

S(1)-O(1)	1.4352(19)	C(7)-C(71)	1.531(3)
S(1)-O(2)	1.4363(18)	C(7)-H(7)	0.9800
S(1)-N(1)	1.599(2)	C(71)-C(72)	1.526(5)
S(1)-C(1)	1.766(2)	C(71)-H(71A)	0.9700
C(1)-C(6)	1.372(3)	C(71)-H(71B)	0.9700
C(1)-C(2)	1.391(4)	C(72)-C(73)	1.503(6)
C(2)-C(3)	1.379(4)	C(72)-C(74)	1.524(7)
C(2)-H(2)	0.9300	С(72)-Н(72)	0.9800
C(3)-C(4)	1.383(5)	C(73)-H(73A)	0.9600
C(3)-H(3)	0.9300	C(73)-H(73B)	0.9600
C(4)-C(5)	1.389(4)	C(73)-H(73C)	0.9600
C(4)-C(41)	1.512(4)	C(74)-H(74A)	0.9600
C(41)-H(41A)	0.9600	C(74)-H(74B)	0.9600
C(41)-H(41B)	0.9600	C(74)-H(74C)	0.9600
C(41)-H(41C)	0.9600	C(8)-O(8)	1.225(3)
C(5)-C(6)	1.386(4)	C(8)-N(2)	1.337(3)
C(5)-H(5)	0.9300	N(2)-N(3)	1.411(3)
C(6)-H(6)	0.9300	N(2)-H(2N)	0.81(3)
N(1)-C(7)	1.464(3)	N(3)-H(3N1)	0.91(3)
N(1)-H(1N)	0.82(3)	N(3)-H(3N2)	0.94(3)
C(7)-C(8)	1.530(3)		
O(1)-S(1)-O(2)	119.15(12)	C(2)-C(3)-C(4)	121.7(3)
O(1)-S(1)-N(1)	106.20(12)	C(2)-C(3)-H(3)	119.1
O(2)-S(1)-N(1)	108.00(11)	C(4)-C(3)-H(3)	119.1
O(1)-S(1)-C(1)	107.09(11)	C(3)-C(4)-C(5)	117.9(3)
O(2)-S(1)-C(1)	107.18(12)	C(3)-C(4)-C(41)	121.1(3)
N(1)-S(1)-C(1)	108.94(10)	C(5)-C(4)-C(41)	121.0(3)
C(6)-C(1)-C(2)	120.1(2)	C(4)-C(41)-H(41A)	109.5
C(6)-C(1)-S(1)	121.43(19)	C(4)-C(41)-H(41B)	109.5
C(2)-C(1)-S(1)	118.5(2)	H(41A)-C(41)-H(41B)	109.5
C(3)-C(2)-C(1)	119.3(3)	C(4)-C(41)-H(41C)	109.5
C(3)-C(2)-H(2)	120.3	H(41A)-C(41)-H(41C)	109.5
C(1)-C(2)-H(2)	120.3	H(41B)-C(41)-H(41C)	109.5

Table S2. Bond lengths [Å] and angles $[\circ]$ for compound 5b.

C(6)-C(5)-C(4)	121.2(3)	C(73)-C(72)-H(72)	108.1
C(6)-C(5)-H(5)	119.4	C(74)-C(72)-H(72)	108.1
C(4)-C(5)-H(5)	119.4	C(71)-C(72)-H(72)	108.1
C(1)-C(6)-C(5)	119.8(2)	C(72)-C(73)-H(73A)	109.5
C(1)-C(6)-H(6)	120.1	C(72)-C(73)-H(73B)	109.5
C(5)-C(6)-H(6)	120.1	H(73A)-C(73)-H(73B)	109.5
C(7)-N(1)-S(1)	123.53(16)	С(72)-С(73)-Н(73С)	109.5
C(7)-N(1)-H(1N)	119(2)	H(73A)-C(73)-H(73C)	109.5
S(1)-N(1)-H(1N)	109.8(19)	H(73B)-C(73)-H(73C)	109.5
N(1)-C(7)-C(8)	109.33(17)	C(72)-C(74)-H(74A)	109.5
N(1)-C(7)-C(71)	107.5(2)	C(72)-C(74)-H(74B)	109.5
C(8)-C(7)-C(71)	113.00(19)	H(74A)-C(74)-H(74B)	109.5
N(1)-C(7)-H(7)	109.0	C(72)-C(74)-H(74C)	109.5
C(8)-C(7)-H(7)	109.0	H(74A)-C(74)-H(74C)	109.5
C(71)-C(7)-H(7)	109.0	H(74B)-C(74)-H(74C)	109.5
C(72)-C(71)-C(7)	116.1(3)	O(8)-C(8)-N(2)	122.5(2)
C(72)-C(71)-H(71A)	108.3	O(8)-C(8)-C(7)	121.7(2)
C(7)-C(71)-H(71A)	108.3	N(2)-C(8)-C(7)	115.76(19)
C(72)-C(71)-H(71B)	108.3	C(8)-N(2)-N(3)	121.4(2)
C(7)-C(71)-H(71B)	108.3	C(8)-N(2)-H(2N)	120(3)
H(71A)-C(71)-H(71B)	107.4	N(3)-N(2)-H(2N)	119(3)
C(73)-C(72)-C(74)	109.7(4)	N(2)-N(3)-H(3N1)	110(2)
C(73)-C(72)-C(71)	113.5(3)	N(2)-N(3)-H(3N2)	108(2)
C(74)-C(72)-C(71)	109.3(4)	H(3N1)-N(3)-H(3N2)	103(3)

S(1)-O(2)	1.433(2)	C(5)-H(5)	0.9300
S(1)-O(1)	1.4352(19)	C(6)-H(6)	0.9300
S(1)-N(1)	1.604(2)	C(7)-C(8)	1.519(4)
S(1)-C(1)	1.762(3)	C(7)-C(71)	1.537(3)
O(8)-C(8)	1.223(3)	C(7)-H(7)	0.9800
N(1)-C(7)	1.463(3)	C(8)-N(2)	1.327(4)
N(1)-H(1N)	0.80(3)	C(71)-C(72)	1.512(4)
C(1)-C(6)	1.376(4)	C(71)-C(73)	1.520(5)
C(1)-C(2)	1.387(4)	C(71)-H(71)	0.9800
C(2)-C(3)	1.371(4)	C(72)-H(72A)	0.9600
C(2)-H(2)	0.9300	C(72)-H(72B)	0.9600
C(3)-C(4)	1.395(4)	C(72)-H(72C)	0.9600
C(3)-H(3)	0.9300	C(73)-H(73A)	0.9600
C(4)-O(4)	1.353(3)	C(73)-H(73B)	0.9600
C(4)-C(5)	1.379(4)	C(73)-H(73C)	0.9600
O(4)-C(41)	1.413(4)	N(2)-N(3)	1.417(4)
C(41)-H(41A)	0.9600	N(2)-H(2N)	0.79(3)
C(41)-H(41B)	0.9600	N(3)-H(3N1)	0.91(3)
C(41)-H(41C)	0.9600	N(3)-H(3N2)	0.79(3)
C(5)-C(6)	1.384(4)		
O(2)-S(1)-O(1)	119.59(13)	C(3)-C(2)-H(2)	120.1
O(2)-S(1)-N(1)	107.57(12)	C(1)-C(2)-H(2)	120.1
O(1)-S(1)-N(1)	106.42(12)	C(2)-C(3)-C(4)	120.3(3)
O(2)-S(1)-C(1)	107.14(12)	C(2)-C(3)-H(3)	119.8
O(1)-S(1)-C(1)	106.81(13)	C(4)-C(3)-H(3)	119.8
N(1)-S(1)-C(1)	109.00(12)	O(4)-C(4)-C(5)	125.4(3)
C(7)-N(1)-S(1)	122.74(18)	O(4)-C(4)-C(3)	114.9(3)
C(7)-N(1)-H(1N)	119(2)	C(5)-C(4)-C(3)	119.7(3)
S(1)-N(1)-H(1N)	112(2)	C(4)-O(4)-C(41)	118.0(3)
C(6)-C(1)-C(2)	120.1(3)	O(4)-C(41)-H(41A)	109.5
C(6)-C(1)-S(1)	121.0(2)	O(4)-C(41)-H(41B)	109.5
C(2)-C(1)-S(1)	118.9(2)	H(41A)-C(41)-H(41B)	109.5
C(3)-C(2)-C(1)	119.7(3)	O(4)-C(41)-H(41C)	109.5

Table S3. Bond lengths [Å] and angles $[\circ]$ for compound 5c.

H(41A)-C(41)-H(41C)	109.5	C(73)-C(71)-H(71)	108.4
H(41B)-C(41)-H(41C)	109.5	C(7)-C(71)-H(71)	108.4
C(4)-C(5)-C(6)	119.7(2)	С(71)-С(72)-Н(72А)	109.5
C(4)-C(5)-H(5)	120.2	C(71)-C(72)-H(72B)	109.5
C(6)-C(5)-H(5)	120.2	H(72A)-C(72)-H(72B)	109.5
C(1)-C(6)-C(5)	120.4(3)	С(71)-С(72)-Н(72С)	109.5
C(1)-C(6)-H(6)	119.8	H(72A)-C(72)-H(72C)	109.5
C(5)-C(6)-H(6)	119.8	H(72B)-C(72)-H(72C)	109.5
N(1)-C(7)-C(8)	111.6(2)	С(71)-С(73)-Н(73А)	109.5
N(1)-C(7)-C(71)	109.3(2)	С(71)-С(73)-Н(73В)	109.5
C(8)-C(7)-C(71)	109.3(2)	H(73A)-C(73)-H(73B)	109.5
N(1)-C(7)-H(7)	108.9	С(71)-С(73)-Н(73С)	109.5
C(8)-C(7)-H(7)	108.9	H(73A)-C(73)-H(73C)	109.5
C(71)-C(7)-H(7)	108.9	H(73B)-C(73)-H(73C)	109.5
O(8)-C(8)-N(2)	122.6(3)	C(8)-N(2)-N(3)	123.3(2)
O(8)-C(8)-C(7)	121.4(2)	C(8)-N(2)-H(2N)	123(2)
N(2)-C(8)-C(7)	115.9(2)	N(3)-N(2)-H(2N)	114(2)
C(72)-C(71)-C(73)	110.3(3)	N(2)-N(3)-H(3N1)	107(2)
C(72)-C(71)-C(7)	111.3(2)	N(2)-N(3)-H(3N2)	105(3)
C(73)-C(71)-C(7)	110.0(3)	H(3N1)-N(3)-H(3N2)	114(4)
C(72)-C(71)-H(71)	108.4		

Cl(14)-C(14)	1.730(4)	Cl(24)-C(24)	1.744(4)
S(1)-O(11)	1.427(3)	S(2)-O(21)	1.431(3)
S(1)-O(12)	1.436(3)	S(2)-O(22)	1.431(3)
S(1)-N(11)	1.604(3)	S(2)-N(21)	1.600(3)
S(1)-C(11)	1.765(3)	S(2)-C(21)	1.772(3)
O(18)-C(18)	1.213(4)	O(28)-C(28)	1.216(4)
N(11)-C(17)	1.454(4)	N(21)-C(27)	1.461(4)
N(11)-HN11	0.77(4)	N(21)-HN21	0.78(4)
N(12)-C(18)	1.332(4)	N(22)-C(28)	1.332(4)
N(12)-N(13)	1.414(4)	N(22)-N(23)	1.418(4)
N(12)-HN12	0.79(4)	N(22)-HN22	0.83(4)
N(13)-H(131)	0.89(5)	N(23)-H(231)	0.95(4)
N(13)-H(132)	0.92(5)	N(23)-H(232)	1.04(4)
C(11)-C(16)	1.383(5)	C(21)-C(22)	1.374(5)
C(11)-C(12)	1.385(5)	C(21)-C(26)	1.382(5)
C(12)-C(13)	1.377(6)	C(22)-C(23)	1.395(5)
С(12)-Н(12)	0.9300	C(22)-H(22)	0.9300
C(13)-C(14)	1.385(7)	C(23)-C(24)	1.365(6)
С(13)-Н(13)	0.9300	C(23)-H(23)	0.9300
C(14)-C(15)	1.361(6)	C(24)-C(25)	1.374(6)
C(15)-C(16)	1.385(5)	C(25)-C(26)	1.379(6)
C(15)-H(15)	0.9300	C(25)-H(25)	0.9300
С(16)-Н(16)	0.9300	C(26)-H(26)	0.9300
C(17)-C(171)	1.509(6)	C(27)-C(271)	1.520(5)
C(17)-C(18)	1.536(4)	C(27)-C(28)	1.532(4)
С(17)-Н(17)	0.9800	C(27)-H(27)	0.9800
С(171)-Н(171)	0.9600	С(271)-Н(271)	0.9600
С(171)-Н(172)	0.9600	С(271)-Н(272)	0.9600
C(171)-H(173)	0.9600	C(271)-H(273)	0.9600
O(11)-S(1)-O(12)	119.84(18)	O(12)-S(1)-C(11)	107.09(17)
O(11)-S(1)-N(11)	105.83(17)	N(11)-S(1)-C(11)	108.61(15)
O(12)-S(1)-N(11)	107.35(17)	C(17)-N(11)-S(1)	122.4(3)
O(11)-S(1)-C(11)	107.75(17)	C(17)-N(11)-HN11	115(3)

 Table S4. Bond lengths [Å] and angles [°] for compound 5d.

S(1)-N(11)-HN11	114(3)	H(171)-C(171)-H(172)	109.5
C(18)-N(12)-N(13)	121.8(3)	C(17)-C(171)-H(173)	109.5
C(18)-N(12)-HN12	121(3)	H(171)-C(171)-H(173)	109.5
N(13)-N(12)-HN12	117(3)	H(172)-C(171)-H(173)	109.5
N(12)-N(13)-H(131)	110(3)	O(21)-S(2)-O(22)	120.06(16)
N(12)-N(13)-H(132)	110(3)	O(21)-S(2)-N(21)	107.44(15)
H(131)-N(13)-H(132)	112(4)	O(22)-S(2)-N(21)	106.06(16)
C(16)-C(11)-C(12)	120.8(3)	O(21)-S(2)-C(21)	106.72(16)
C(16)-C(11)-S(1)	120.3(3)	O(22)-S(2)-C(21)	107.58(17)
C(12)-C(11)-S(1)	118.8(3)	N(21)-S(2)-C(21)	108.58(14)
C(13)-C(12)-C(11)	119.2(4)	C(27)-N(21)-S(2)	121.9(2)
С(13)-С(12)-Н(12)	120.4	C(27)-N(21)-HN21	118(3)
С(11)-С(12)-Н(12)	120.4	S(2)-N(21)-HN21	115(3)
C(12)-C(13)-C(14)	119.4(4)	C(28)-N(22)-N(23)	122.2(3)
С(12)-С(13)-Н(13)	120.3	C(28)-N(22)-HN22	122(3)
С(14)-С(13)-Н(13)	120.3	N(23)-N(22)-HN22	115(3)
C(15)-C(14)-C(13)	121.7(4)	N(22)-N(23)-H(231)	112(3)
C(15)-C(14)-Cl(14)	119.5(4)	N(22)-N(23)-H(232)	105(2)
C(13)-C(14)-Cl(14)	118.9(3)	H(231)-N(23)-H(232)	104(3)
C(14)-C(15)-C(16)	119.3(4)	C(22)-C(21)-C(26)	120.9(3)
С(14)-С(15)-Н(15)	120.3	C(22)-C(21)-S(2)	120.1(3)
С(16)-С(15)-Н(15)	120.3	C(26)-C(21)-S(2)	119.0(3)
C(11)-C(16)-C(15)	119.5(4)	C(21)-C(22)-C(23)	119.3(4)
С(11)-С(16)-Н(16)	120.2	C(21)-C(22)-H(22)	120.4
С(15)-С(16)-Н(16)	120.2	C(23)-C(22)-H(22)	120.4
N(11)-C(17)-C(171)	109.1(3)	C(24)-C(23)-C(22)	119.2(4)
N(11)-C(17)-C(18)	111.1(3)	C(24)-C(23)-H(23)	120.4
C(171)-C(17)-C(18)	109.4(3)	C(22)-C(23)-H(23)	120.4
N(11)-C(17)-H(17)	109.1	C(23)-C(24)-C(25)	121.8(4)
С(171)-С(17)-Н(17)	109.1	C(23)-C(24)-Cl(24)	118.8(3)
С(18)-С(17)-Н(17)	109.1	C(25)-C(24)-Cl(24)	119.5(3)
O(18)-C(18)-N(12)	122.9(3)	C(24)-C(25)-C(26)	119.2(4)
O(18)-C(18)-C(17)	121.6(3)	C(24)-C(25)-H(25)	120.4
N(12)-C(18)-C(17)	115.6(3)	C(26)-C(25)-H(25)	120.4
С(17)-С(171)-Н(171)	109.5	C(25)-C(26)-C(21)	119.7(4)
C(17)-C(171)-H(172)	109.5	C(25)-C(26)-H(26)	120.1

С(21)-С(26)-Н(26)	120.1	C(27)-C(271)-H(272)	109.5
N(21)-C(27)-C(271)	109.1(3)	H(271)-C(271)-H(272)	109.5
N(21)-C(27)-C(28)	111.1(3)	C(27)-C(271)-H(273)	109.5
C(271)-C(27)-C(28)	109.5(3)	H(271)-C(271)-H(273)	109.5
N(21)-C(27)-H(27)	109.0	H(272)-C(271)-H(273)	109.5
С(271)-С(27)-Н(27)	109.0	O(28)-C(28)-N(22)	122.7(3)
С(28)-С(27)-Н(27)	109.0	O(28)-C(28)-C(27)	122.5(3)
C(27)-C(271)-H(271)	109.5	N(22)-C(28)-C(27)	114.8(3)

S(1)-O(1)	1.432(2)	C(7)-C(71)	1.550(4)
S(1)-O(2)	1.433(2)	C(7)-H(7)	0.9800
S(1)-N(1)	1.596(2)	C(71)-C(72)	1.502(5)
S(1)-C(1)	1.775(3)	C(71)-C(73)	1.521(6)
C(1)-C(6)	1.371(4)	C(71)-H(71)	0.9800
C(1)-C(2)	1.380(4)	C(72)-H(72A)	0.9600
C(2)-C(3)	1.391(5)	C(72)-H(72B)	0.9600
C(2)-H(2)	0.9300	C(72)-H(72C)	0.9600
C(3)-C(4)	1.384(6)	C(73)-H(73A)	0.9600
C(3)-H(3)	0.9300	C(73)-H(73B)	0.9600
C(4)-C(5)	1.361(5)	С(73)-Н(73С)	0.9600
C(4)-Cl(4)	1.735(4)	C(8)-O(8)	1.224(4)
C(5)-C(6)	1.394(4)	C(8)-N(2)	1.324(4)
C(5)-H(5)	0.9300	N(2)-N(3)	1.412(4)
C(6)-H(6)	0.9300	N(2)-H(2N)	0.80(4)
N(1)-C(7)	1.466(4)	N(3)-H(3N2)	0.84(4)
N(1)-H(1N)	0.74(4)	N(3)-H(3N1)	0.72(4)
C(7)-C(8)	1.512(4)		
O(1)-S(1)-O(2)	119.79(15)	C(5)-C(4)-C(3)	121.4(3)
O(1)-S(1)-N(1)	106.45(15)	C(5)-C(4)-Cl(4)	119.0(3)
O(2)-S(1)-N(1)	108.04(14)	C(3)-C(4)-Cl(4)	119.6(3)
O(1)-S(1)-C(1)	106.62(15)	C(4)-C(5)-C(6)	119.0(3)
O(2)-S(1)-C(1)	106.59(14)	C(4)-C(5)-H(5)	120.5
N(1)-S(1)-C(1)	109.04(14)	C(6)-C(5)-H(5)	120.5
C(6)-C(1)-C(2)	120.6(3)	C(1)-C(6)-C(5)	120.3(3)
C(6)-C(1)-S(1)	119.8(2)	C(1)-C(6)-H(6)	119.8
C(2)-C(1)-S(1)	119.7(2)	C(5)-C(6)-H(6)	119.8
C(1)-C(2)-C(3)	119.3(3)	C(7)-N(1)-S(1)	123.4(2)
C(1)-C(2)-H(2)	120.4	C(7)-N(1)-H(1N)	116(3)
C(3)-C(2)-H(2)	120.4	S(1)-N(1)-H(1N)	112(3)
C(4)-C(3)-C(2)	119.4(3)	N(1)-C(7)-C(8)	111.3(2)
C(4)-C(3)-H(3)	120.3	N(1)-C(7)-C(71)	108.6(2)
C(2)-C(3)-H(3)	120.3	C(8)-C(7)-C(71)	109.5(2)

Table S5. Bond lengths [Å] and angles [°] for compound 5e.

N(1)-C(7)-H(7)	109.1
C(8)-C(7)-H(7)	109.1
C(71)-C(7)-H(7)	109.1
C(72)-C(71)-C(73)	110.5(4)
C(72)-C(71)-C(7)	111.2(3)
C(73)-C(71)-C(7)	109.7(3)
C(72)-C(71)-H(71)	108.4
C(73)-C(71)-H(71)	108.4
C(7)-C(71)-H(71)	108.4
C(71)-C(72)-H(72A)	109.5
C(71)-C(72)-H(72B)	109.5
H(72A)-C(72)-H(72B)	109.5
С(71)-С(72)-Н(72С)	109.5
H(72A)-C(72)-H(72C)	109.5
H(72B)-C(72)-H(72C)	109.5
C(71)-C(73)-H(73A)	109.5
C(71)-C(73)-H(73B)	109.5
H(73A)-C(73)-H(73B)	109.5
С(71)-С(73)-Н(73С)	109.5
H(73A)-C(73)-H(73C)	109.5
H(73B)-C(73)-H(73C)	109.5
O(8)-C(8)-N(2)	122.5(3)
O(8)-C(8)-C(7)	121.4(3)
N(2)-C(8)-C(7)	116.0(2)
C(8)-N(2)-N(3)	122.8(2)
C(8)-N(2)-H(2N)	120(3)
N(3)-N(2)-H(2N)	117(3)
N(2)-N(3)-H(3N2)	111(3)
N(2)-N(3)-H(3N1)	103(4)
H(3N2)-N(3)-H(3N1)	104(5)

O(2)-S(1)-C(1)-C(6)	-0.2(3)
O(1)-S(1)-C(1)-C(6)	130.0(2)
N(1)-S(1)-C(1)-C(6)	-115.5(2)
O(2)-S(1)-C(1)-C(2)	177.3(2)
O(1)-S(1)-C(1)-C(2)	-52.5(3)
N(1)-S(1)-C(1)-C(2)	62.0(3)
C(6)-C(1)-C(2)-C(3)	-1.2(4)
S(1)-C(1)-C(2)-C(3)	-178.7(2)
C(1)-C(2)-C(3)-C(4)	0.0(5)
C(2)-C(3)-C(4)-C(5)	0.7(5)
C(2)-C(3)-C(4)-C(41)	-179.4(3)
C(3)-C(4)-C(5)-C(6)	-0.2(5)
C(41)-C(4)-C(5)-C(6)	179.9(3)
C(4)-C(5)-C(6)-C(1)	-1.0(5)
C(2)-C(1)-C(6)-C(5)	1.7(4)
S(1)-C(1)-C(6)-C(5)	179.2(2)
O(2)-S(1)-N(1)-C(7)	-54.4(2)
O(1)-S(1)-N(1)-C(7)	176.4(2)
C(1)-S(1)-N(1)-C(7)	60.0(2)
S(1)-N(1)-C(7)-C(8)	-87.1(2)
S(1)-N(1)-C(7)-C(71)	152.6(2)
N(1)-C(7)-C(71)-C(72)	-58.4(3)
C(8)-C(7)-C(71)-C(72)	-178.7(3)
N(1)-C(7)-C(71)-C(73)	178.9(3)
C(8)-C(7)-C(71)-C(73)	58.5(3)
N(1)-C(7)-C(8)-O(8)	-58.8(4)
C(71)-C(7)-C(8)-O(8)	61.5(4)
N(1)-C(7)-C(8)-N(2)	121.9(3)
C(71)-C(7)-C(8)-N(2)	-117.9(3)
O(8)-C(8)-N(2)-N(3)	-0.6(5)
C(7)-C(8)-N(2)-N(3)	178.8(3)

 Table S6. Torsion angles [°] for compound 5a.

O(1)-S(1)-C(1)-C(6)	133.2(2)
O(2)-S(1)-C(1)-C(6)	4.3(2)
N(1)-S(1)-C(1)-C(6)	-112.4(2)
O(1)-S(1)-C(1)-C(2)	-45.9(2)
O(2)-S(1)-C(1)-C(2)	-174.8(2)
N(1)-S(1)-C(1)-C(2)	68.5(2)
C(6)-C(1)-C(2)-C(3)	-0.7(4)
S(1)-C(1)-C(2)-C(3)	178.4(2)
C(1)-C(2)-C(3)-C(4)	-0.4(5)
C(2)-C(3)-C(4)-C(5)	1.2(5)
C(2)-C(3)-C(4)-C(41)	-179.0(3)
C(3)-C(4)-C(5)-C(6)	-0.9(4)
C(41)-C(4)-C(5)-C(6)	179.3(3)
C(2)-C(1)-C(6)-C(5)	1.0(4)
S(1)-C(1)-C(6)-C(5)	-178.1(2)
C(4)-C(5)-C(6)-C(1)	-0.1(4)
O(1)-S(1)-N(1)-C(7)	-172.12(18)
O(2)-S(1)-N(1)-C(7)	-43.2(2)
C(1)-S(1)-N(1)-C(7)	72.8(2)
S(1)-N(1)-C(7)-C(8)	-74.4(2)
S(1)-N(1)-C(7)-C(71)	162.53(16)
N(1)-C(7)-C(71)-C(72)	-163.8(2)
C(8)-C(7)-C(71)-C(72)	75.5(3)
C(7)-C(71)-C(72)-C(73)	-76.5(4)
C(7)-C(71)-C(72)-C(74)	160.7(3)
N(1)-C(7)-C(8)-O(8)	-58.1(3)
C(71)-C(7)-C(8)-O(8)	61.6(3)
N(1)-C(7)-C(8)-N(2)	119.3(2)
C(71)-C(7)-C(8)-N(2)	-121.0(2)
O(8)-C(8)-N(2)-N(3)	1.8(4)
C(7)-C(8)-N(2)-N(3)	-175.6(2)

 Table S7. Torsion angles [°] for compound 5b.

O(2)-S(1)-N(1)-C(7)	-43.0(2)
O(1)-S(1)-N(1)-C(7)	-172.3(2)
C(1)-S(1)-N(1)-C(7)	72.8(2)
O(2)-S(1)-C(1)-C(6)	28.1(2)
O(1)-S(1)-C(1)-C(6)	157.4(2)
N(1)-S(1)-C(1)-C(6)	-88.0(2)
O(2)-S(1)-C(1)-C(2)	-153.2(2)
O(1)-S(1)-C(1)-C(2)	-24.0(3)
N(1)-S(1)-C(1)-C(2)	90.6(2)
C(6)-C(1)-C(2)-C(3)	-2.4(4)
S(1)-C(1)-C(2)-C(3)	179.0(2)
C(1)-C(2)-C(3)-C(4)	1.9(5)
C(2)-C(3)-C(4)-O(4)	-179.5(3)
C(2)-C(3)-C(4)-C(5)	-0.7(5)
C(5)-C(4)-O(4)-C(41)	3.5(5)
C(3)-C(4)-O(4)-C(41)	-177.8(3)
O(4)-C(4)-C(5)-C(6)	178.6(3)
C(3)-C(4)-C(5)-C(6)	0.0(4)
C(2)-C(1)-C(6)-C(5)	1.6(4)
S(1)-C(1)-C(6)-C(5)	-179.7(2)
C(4)-C(5)-C(6)-C(1)	-0.4(4)
S(1)-N(1)-C(7)-C(8)	-85.8(3)
S(1)-N(1)-C(7)-C(71)	153.19(19)
N(1)-C(7)-C(8)-O(8)	-53.6(3)
C(71)-C(7)-C(8)-O(8)	67.4(3)
N(1)-C(7)-C(8)-N(2)	129.4(2)
C(71)-C(7)-C(8)-N(2)	-109.6(3)
N(1)-C(7)-C(71)-C(72)	-59.4(3)
C(8)-C(7)-C(71)-C(72)	178.3(3)
N(1)-C(7)-C(71)-C(73)	178.1(3)
C(8)-C(7)-C(71)-C(73)	55.8(3)
O(8)-C(8)-N(2)-N(3)	-1.8(5)
C(7)-C(8)-N(2)-N(3)	175.1(2)

 Table S8. Torsion angles [°] for compound 5c.

-174.2(2)
-45.1(3)
70.3(3)
139.4(3)
9.2(4)
-106.4(3)
-43.6(3)
-173.8(3)
70.6(3)
0.2(6)
-176.8(3)
0.2(6)
-0.3(6)
178.0(3)
-0.1(6)
-178.3(3)
-0.5(6)
176.4(3)
0.4(6)
165.2(3)
-74.2(3)
-0.4(6)
179.3(3)
-46.5(5)
73.9(5)
133.8(3)
-105.8(4)
-42.2(3)
-171.8(2)
72.8(3)
7.3(3)
137.4(3)
-108.3(3)
-173.3(3)

 Table S9. Torsion angles [°] for compound 5d.

O(22)-S(2)-C(21)-C(26)	-43.2(3)
N(21)-S(2)-C(21)-C(26)	71.1(3)
C(26)-C(21)-C(22)-C(23)	-0.6(6)
S(2)-C(21)-C(22)-C(23)	178.8(3)
C(21)-C(22)-C(23)-C(24)	0.1(6)
C(22)-C(23)-C(24)-C(25)	0.2(6)
C(22)-C(23)-C(24)-Cl(24)	-179.3(3)
C(23)-C(24)-C(25)-C(26)	0.1(6)
Cl(24)-C(24)-C(25)-C(26)	179.5(3)
C(24)-C(25)-C(26)-C(21)	-0.5(6)
C(22)-C(21)-C(26)-C(25)	0.8(6)
S(2)-C(21)-C(26)-C(25)	-178.6(3)
S(2)-N(21)-C(27)-C(271)	158.0(2)
S(2)-N(21)-C(27)-C(28)	-81.2(3)
N(23)-N(22)-C(28)-O(28)	3.3(5)
N(23)-N(22)-C(28)-C(27)	-177.8(3)
N(21)-C(27)-C(28)-O(28)	-49.0(4)
C(271)-C(27)-C(28)-O(28)	71.6(4)
N(21)-C(27)-C(28)-N(22)	132.2(3)
C(271)-C(27)-C(28)-N(22)	-107.3(3)

O(1)-S(1)-C(1)-C(6)	153.7(3)
O(2)-S(1)-C(1)-C(6)	24.7(3)
N(1)-S(1)-C(1)-C(6)	-91.7(3)
O(1)-S(1)-C(1)-C(2)	-26.7(3)
O(2)-S(1)-C(1)-C(2)	-155.7(3)
N(1)-S(1)-C(1)-C(2)	87.9(3)
C(6)-C(1)-C(2)-C(3)	-2.2(5)
S(1)-C(1)-C(2)-C(3)	178.2(3)
C(1)-C(2)-C(3)-C(4)	0.7(5)
C(2)-C(3)-C(4)-C(5)	0.2(6)
C(2)-C(3)-C(4)-Cl(4)	-178.9(3)
C(3)-C(4)-C(5)-C(6)	0.2(5)
Cl(4)-C(4)-C(5)-C(6)	179.3(3)
C(2)-C(1)-C(6)-C(5)	2.7(5)
S(1)-C(1)-C(6)-C(5)	-177.7(2)
C(4)-C(5)-C(6)-C(1)	-1.7(5)
O(1)-S(1)-N(1)-C(7)	-172.4(2)
O(2)-S(1)-N(1)-C(7)	-42.6(3)
C(1)-S(1)-N(1)-C(7)	72.9(2)
S(1)-N(1)-C(7)-C(8)	-85.1(3)
S(1)-N(1)-C(7)-C(71)	154.3(2)
N(1)-C(7)-C(71)-C(72)	-63.2(4)
C(8)-C(7)-C(71)-C(72)	175.1(3)
N(1)-C(7)-C(71)-C(73)	174.3(3)
C(8)-C(7)-C(71)-C(73)	52.5(4)
N(1)-C(7)-C(8)-O(8)	-54.4(4)
C(71)-C(7)-C(8)-O(8)	65.7(4)
N(1)-C(7)-C(8)-N(2)	128.9(3)
C(71)-C(7)-C(8)-N(2)	-111.0(3)
O(8)-C(8)-N(2)-N(3)	-1.3(5)
C(7)-C(8)-N(2)-N(3)	175.3(3)

 Table S10. Torsion angles [°] for compound 5e.

Fig. S1 Overall packing for 5b viewed along the *b* axis direction.

Fig. S2 Overall packing for 5c viewed along the *b* axis direction.

Fig. S3 Overall packing for 5d viewed along the *b* axis direction.

In Fig. S4a we show the three dihedral angles used for the conformational analysis in compound IA (steps of 60°, 216 calculations). We have used the M06-2X/6-31G* level of theory and the Spartan program¹ for the initial conformational analysis. Subsequently the five more stable conformation were fully optimized at the M06-2X/def2-TZVP level of theory using Gaussian-09 program.² As a final result, conformations denoted as IA and IB where found the most stable. It should be noted that the stability of compound IB is due to the formation of an intramolecular H-bond that is established between the sulfonamide NH group (excellent H-bond donor) and the hydrazido CO group (excellent H-bond acceptor). In fact, the intramolecular distance is quite short (2.09 Å) taking into consideration the restriction of the five-membered supramolecular ring. In addition, a C–H…O interaction involving the methyl group and the O-atom of the sulfonamide is also present in this conformation. These H-bonds reduce significantly the number of stable (local minimum) conformations in this particular hydrazinyl-sulfonamide combination.

Fig. S4. (a) Indication of the α , β , γ dihedral angles used in the conformational search. (b) conformation **IB** and the geometric details of the H-bond.

References

1. Spartan'10 v. 1.1.0, Wavefunction Inc., Irvine, CA

Gaussian 09, Revision C.01 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 (Gaussian, Inc., Wallingford CT, 2009).