Electronic Supplementary Information (ESI)

Two 2D microporous MOFs based on bent carboxylates and linear spacer for selective CO_{2} adsorption

Arun Pal^{\dagger}, Antarip Mitra ${ }^{\dagger}$, Santanu Chand ${ }^{\dagger}$, Jian-Bin Lin ${ }^{\ddagger}$ and Madhab C. Das ${ }^{\dagger *}$
${ }^{\dagger}$ Department of Chemistry, Indian Institute of Technology Kharagpur, 721302, W.B., India.
${ }^{\ddagger}$ Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada. E-mail: mcdas@chem.iitkgp.ac.in

Abstract

Physical Measurements. FTIR spectra were measured on a Perkin-Elmer RX1 spectrophotometer in the wavenumber range of 4000 to $400 \mathrm{~cm}^{-1}$. Elemental analyses (C, H, N and S) were carried out on an Elementar, Vario Micro Cube elemental analyzer. Powder XRD data were collected with $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation on a Bruker D8 Advance diffactometer in the range of $2 \theta=5-50^{\circ}$. Thermogravimetric analysis (TGA) experiments were studied on a TG 209 F3 Tarsus (Netzsch) from room temperature to $800{ }^{\circ} \mathrm{C}$ at $5{ }^{\circ} \mathrm{C} / \mathrm{min}$ under N_{2} atmosphere. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectrum was recorded on a Bruker Avance II 400 spectrometer. Mass (MALDI-TOF) spectrum was recorded using a Bruker MALDI-TOF/TOF mass spectrometer. Gas sorption experiments were tested on a Micromeritics 3-Flex Surface Characterization Analyzer at different temperatures. To remove all the guest solvents in the framework, the fresh samples were first solvent-exchanged with dry chloroform at least 10 times within two days and degassed at 343 K for 12 h until the outgas rate was $5 \mu \mathrm{mHg} / \mathrm{min}$ prior to measurements. The sorption measurement was maintained at 77 K under liquid nitrogen and at 195 K by using methanol/dry ice mixture. A chiller was used for adsorption isotherms at 273 and 295 K , respectively. Single Crystal X-ray Diffraction. The single-crystal X-ray diffraction data were collected with Mo- K_{α} radiation ($\lambda=0.71073 \AA$) on a Bruker SMART APEX II CCD diffractomete at 298 K for $\mathbf{1}$ and 2. The absorption correction was carried out using the SADABS program. The structures were solved by direct methods, and the non-hydrogen atoms were refined anisotropically by the SHELXTL software package with full-matrix least-squares procedure. ${ }^{1}$ The highly disordered guest solvent molecules for 2 in void volume can be removed by PLATON/SQUEEZE. ${ }^{2}$ The crystal, refinement data, selected bond lengths and angles of complexes 1-2 are summarized in Table S1 and S2, ESI, respectively.

Table S1: Crystal data and structure refinements for MOFs 1-2.

	1	2
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{CdN}_{5} \mathrm{O}_{7}$	$\mathrm{C}_{40} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{13} \mathrm{~S}_{2} \mathrm{Zn}_{2}$
Formula weight	667.94	965.51
Temperature (K)	298 (1)	298 (1)
Radiation	Mo-K ${ }^{\text {a }}$	Mo-K ${ }^{\text {a }}$
Wavelength (λ)	$0.71073 \AA$	$0.71073 \AA$
Crystal system	Triclinic	Triclinic
Space group	$P \overline{1}$	P1
$a[\AA]$	9.949 (5)	9.894 (5)
$b[\AA]$	11.344 (5)	12.719 (5)
$c[\AA]$	12.395 (5)	12.789 (5)
$\alpha\left[{ }^{\circ}\right]$	98.565 (5)	60.037 (5)
$\beta\left[{ }^{\circ}\right]$	90.042 (5)	77.603 (5)
$\gamma\left[{ }^{\circ}\right]$	91.149 (5)	83.457 (5)
Volume [\AA^{3}]	1383.0 (11)	1361.7 (10)
Z	2	1
Density (calculated) $\left[\mathrm{Mg} / \mathrm{m}^{3}\right]$	1.604	1.177
Absorption coefficient [mm^{-1}]	0.847	1.011
F (000)	676	490
Refl. used [$I>2 \sigma(I)$]	3921	4218
Independent reflections	6908	6001
$R_{\text {int }}$	0.0730	0.0542
Refinement method	full-matrix least squares on F^{2}	full-matrix least squares on F^{2}
GOF	0.961	1.019
Final R indices [I>2 $/ \mathrm{I}$)]	$R_{1}=0.0527 ; \mathrm{w} R_{2}=0.0977$	$R_{1}=0.0617 ; \mathrm{w} R_{2}=0.1734$
R indices (all data)	$R_{1}=0.1283 ; \mathrm{w} R_{2}=0.1266$	$R_{1}=0.0889 ; \mathrm{w} R_{2}=0.1893$
CCDC No	1877080	1877081

Table S2: Selected Bond Distances (\AA) and Bond Angles $\left({ }^{\circ}\right)$ in 12.

			$\mathbf{1}$					
Cd1	O1	$2.327(4)$	Cd1	O2	$2.337(3)$	Cd1	N4	$2.339(4)$
Cd1	N1	$2.357(4)$	Cd1	O3	$2.369(3)$	Cd1	O4	$2.397(3)$
Cd1	O1	$2.585(3)$						

O1	Cd1	O2	$124.28(12)$	O2	Cd1	O4	$88.25(12)$
O1	Cd1	N4	$91.67(14)$	N4	Cd1	O4	$86.79(13)$
O2	Cd1	N4	$99.77(13)$	N1	Cd1	O4	$96.85(13)$
O1	Cd1	N1	$83.31(13)$	O3	Cd1	O4	$54.74(11)$
O2	Cd1	N1	$83.99(12)$	O1	Cd1	O1	$74.46(12)$

N4	Cd1	N1	$174.87(15)$	O2	Cd1	O1	$52.58(11)$
O1	Cd1	O3	$92.55(12)$	N4	Cd1	O1	$85.98(12)$
O2	Cd1	O3	$140.40(13)$	N1	Cd1	O1	$93.65(12)$
N4	Cd1	O3	$92.36(13)$	O3	Cd1	O1	$166.83(11)$
N1	Cd1	O3	$86.84(13)$	O4	Cd1	O1	$138.01(11)$
O1	Cd1	O4	$147.10(11)$				

				$\mathbf{2}$					
Zn1	O3	$2.011(10)$	Zn1	O7	$2.064(9)$	Zn1	O5	$2.068(8)$	
Zn1	O1	$2.085(10)$	Zn1	N4	$2.125(10)$	Zn2	N1	$1.910(13)$	
Zn2	O4	$2.006(11)$	Zn2	O6	$2.044(10)$	Zn2	O8	$2.063(9)$	
Zn2	O2	$2.083(11)$							

O3 Zn1 O7	87.8(4)	N1 Zn2 O4	101.2(5)
O3 Zn1 O5	161.0(4)	N1 Zn2 O6	102.9(5)
O7 Zn1 O5	87.0(4)	O4 Zn2 O6	155.6(4)
O3 $\mathrm{Zn} 1 \quad \mathrm{O} 1$	91.8(4)	N1 Zn2 O8	99.7(5)
O7 Zn1 O1	158.5(4)	O4 Zn2 O8	87.1(4)
O5 Zn 1 O 1	86.4(4)	O6 Zn2 O8	85.2(4)
O3 Zn1 N4	101.1(4)	N1 Zn2 O2	101.1(5)
O7 Zn1 N4	93.1(4)	O4 Zn2 O2	91.0(5)
O5 Zn1 N4	97.4(4)	O6 Zn2 O2	88.1(4)
O1 Zn1 N4	108.1(4)	O8 Zn2 O2	159.1(4)

Table S3: Non-bonding interactions in 1-2.

Complex-1			
D-H...A	d(H...A) (\AA)	$\mathrm{D}(\mathrm{D} \ldots \mathrm{A})(\AA)$	$\angle \mathrm{DHA}\left({ }^{\mathrm{O}}\right)$
C6 H6 ..O7	2.615	3.361	137.54
C12 H12..O6	2.702	3.342	126.68
C16 H16 ...O7	2.553	3.201	127.16
C23 H23 ...O4	2.577	3.417	150.42
N3 H3N3 ..O4	2.125	2.919	167.12

Complex-2			
D-H...A	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})(\AA)$	$\mathrm{D}(\mathrm{D} \ldots \mathrm{A})(\AA)$	$\angle \mathrm{DHA}\left({ }^{\mathrm{O}}\right)$
C2 H2 . O1	2.605	3.404	144.41
C3 H3 ..O11	2.553	3.411	153.34
C5 H5...O12	2.571	3.045	112.06
C9 H9...O5	2.510	3.154	126.52
C11 H11..O8	2.330	3.244	167.53
C21 H21...O13	2.424	3.276	152.31

Figure S1: Simulated (red) and as synthesized (black) PXRD pattern of $\mathbf{1}$.

Figure S2: As synthesized (blue), chloroform exchanged (red), desolvated (black) and after CO_{2} adsorption (magenta) PXRD pattern of $\mathbf{1}$.

Figure S3: Simulated (red) and as synthesized (black) PXRD pattern of 2.

Figure S4: As synthesized (blue), chloroform exchanged (red), desolvated (black) and after CO_{2} adsorption (magenta) PXRD pattern of $\mathbf{2}$.

Figure S5: TGA of as-synthesized (black) and after gas adsorption (red) 1.

Figure S6: TGA of as-synthesized (black) and after gas adsorption (red) 2.

Figure S7: The pore size distributions for $\mathbf{1}$ (a) and $\mathbf{2}$ (b) derived from the $195 \mathrm{~K} \mathrm{CO}_{2}$ isotherms by applying Horvath-Kawazoe analysis.

Calculation of Isosteric Heats of Adsorption:

The isosteric heats of adsorption $\left(Q_{\mathrm{st}}\right)$ were calculated using the Clausius-Clapeyron equation based on pure-component isotherms collected at two different temperatures of 273 K and 295 K . The $Q_{\text {st }}$ was defined as

$$
Q_{s t}=-R\left(\frac{\partial \ln x}{\partial\left(\frac{1}{T}\right)}\right) y
$$

Where x is the pressure, T is the temperature, R is the gas constant and y is the adsorption amount. These calculations are done through the "Heat of Adsorption" function embedded in the software supplied by Micromeritics 3- Flex Surface Characterization Analyzer.

Figure S8: Isosteric heat of $\mathrm{CO}_{2}\left(Q_{\mathrm{st}}\right)$ of $\mathbf{1}$ and 2.

Table S4: Q_{st} data for CO_{2} adsorption of some selected MOFs.

MOFs	$\mathrm{Q}_{\text {st }}(\mathrm{kJ} / \mathrm{mol})$	Reference
1	30.6	This work
2	24	This work
[Cu(Me-4pytrz-ia) $]$	30	3(a)
PCN-88	27	3(b)
Cu-TPBTM	26	3(c)
$\left[\mathrm{Co}_{2} \mathrm{Cl}_{2}(\mathrm{bbta})\right]$	28	3(d)
ZTF-1	25.4	3(e)
SIFSIX-1-Cu	27	3(f)
SIFSIX-2-Cu	21	3(f)
[$\left.\mathrm{Cu}(\mathrm{bcppm}) \mathrm{H}_{2} \mathrm{O}\right]$	29	3(g)
IITKGP-5	22.6	3(h)
IITKGP-6	23	3(i)
HHU-3	24.6	3(j)
HHU-5	25.6	3(j)
NOTT-125	25.35	3(j)
ZJNU-54	24.7	3(j)
ZJU-8	21.9	3(j)
UTSA-5	28.1	3(k)
UTSA-49	27	3(1)
IPM-MOF-110	32	3(m)
JUC-141	27.85	3(n)
ZIF-78	29	3(o)

Calculation of $\mathrm{CO}_{2} / \mathrm{N}_{2}$ and $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ Selectivity (IAST Selectivity):

Adsorption isotherms and gas selectivities of mixed $\mathrm{CO}_{2} / \mathrm{N}_{2}$ (15:85) and $\mathrm{CO}_{2} / \mathrm{CH}_{4}$ (50:50) at different temperatures were calculated based on the ideal adsorbed solution theory (IAST) proposed by Myers and Prausnitz. ${ }^{4}$ In order to calculate the selective sorption performance of $\mathbf{1}$ and 2 toward the separation of binary mixed gases, the parameters fitted from the singlecomponent $\mathrm{CO}_{2}, \mathrm{CH}_{4}$ and N_{2} adsorption isotherms based on the dual-site Langmuir-Freundlich (DSLF) model and were used in the IAST calculations as given below in detail. ${ }^{5}$

$$
y=\frac{q_{m 1} b_{1} x^{1 / n_{1}}}{1+b_{1} x^{1 / n_{1}}}+\frac{q_{m 2} b_{2} x^{1 / n_{2}}}{1+b_{2} x^{1 / n_{2}}}
$$

Where x is the pressure of the bulk gas at equilibrium with the adsorbed phase $(\mathrm{kPa}) ; y$ is the adsorbed amount per mass of adsorbent $(\mathrm{mmol} / \mathrm{g}), \mathrm{q}_{\mathrm{m} 1}$ and $\mathrm{q}_{\mathrm{m} 2}$ are the saturation capacities of sites 1 and $2(\mathrm{mmol} / \mathrm{g}) ; \mathrm{b}_{1}$ and b_{2} are the affinity coefficients of sites 1 and $2(1 / \mathrm{kPa}), \mathrm{n}_{1}$ and n_{2} represent the deviations from an ideal homogeneous surface. The fitting parameters of DSLF equation are listed in Table S5-S6.

The predicted adsorption selectivity is defined as

$$
S=\binom{\frac{x_{1}}{y_{1}}}{\frac{x_{2}}{y_{2}}}
$$

Where x_{i} and y_{i} are the mole fractions of component $\mathrm{i}(\mathrm{i}=1,2)$ in the adsorbed and bulk phases, respectively. The IAST calculations were carried out for a binary mixture containing $15 \% \mathrm{CO}_{2}$ $\left(y_{1}\right)$ and $85 \% \mathrm{~N}_{2}\left(\mathrm{y}_{2}\right)$, which is typical of flue gases and for a binary mixture containing $50 \% \mathrm{CO}_{2}$ $\left(\mathrm{y}_{1}\right)$ and $50 \% \mathrm{CH}_{4}\left(\mathrm{y}_{2}\right)$, which is typical of landfill gases.

Table S5: Equation parameters for the DSLF isotherm model of $\mathbf{1}$.

Adsorbates	$\mathrm{q}_{\mathrm{m} 1}(\mathrm{mmol} / \mathrm{g})$	$\mathrm{b}_{1}(1 / \mathrm{kPa})$	n_{1}	$\mathrm{q}_{\mathrm{m} 2}(\mathrm{mmol} / \mathrm{g})$	$\mathrm{b}_{2}(1 / \mathrm{kPa})$	n_{2}
$\mathrm{CO}_{2}(273 \mathrm{~K})$	0.3652	0.00448	0.97898	1.49765	0.0618	0.91894
$\mathrm{CH}_{4}(273 \mathrm{~K})$	1.62863	0.0012	0.7229	0.11899	0.05085	0.7739
$\mathrm{~N}_{2}(273 \mathrm{~K})$	1.17985	0.00102	0.88918	0.01391	$1.66033 \mathrm{E}-30$	0.0686

$\mathrm{CO}_{2}(295 \mathrm{~K})$	0.51	$1.55704 \mathrm{E}-18$	0.98	1.69899	0.02374	0.9672
$\mathrm{CH}_{4}(295 \mathrm{~K})$	0.15882	0.03144	0.90095	1.27772	$2.96783 \mathrm{E}-4$	0.6075
$\mathrm{~N}_{2}(295 \mathrm{~K})$	0.26296	$1.47856 \mathrm{E}-4$	0.59325	0.02079	0.00188	0.53862

Table S6: Equation parameters for the DSLF isotherm model of 2.

Adsorbates	$\mathrm{q}_{\mathrm{m} 1}$ $(\mathrm{mmol} / \mathrm{g})$	b_{1} $(1 / \mathrm{kPa})$	n_{1}	$\mathrm{q}_{\mathrm{m} 2}$ $(\mathrm{mmol} / \mathrm{g})$	b_{2} $(1 / \mathrm{kPa})$	n_{2}
$\mathrm{CO}_{2}(273 \mathrm{~K})$	1.96724	0.00709	0.97489	1.16623	0.06025	0.92714
$\mathrm{CH}_{4}(273 \mathrm{~K})$	1.64608	0.00682	0.89879	0.19425	0.0579	0.88992
$\mathrm{~N}_{2}(273 \mathrm{~K})$	1.18208	0.00261	0.94672	0.00472	$2.60513 \mathrm{E}-30$	0.06198
$\mathrm{CO}_{2}(295 \mathrm{~K})$	1.87897	0.00519	0.9454	0.90519	0.03627	0.94899
$\mathrm{CH}_{4}(295 \mathrm{~K})$	3.00578	$4.77937 \mathrm{E}-4$	0.97268	1.44787	0.00773	0.98839
$\mathrm{~N}_{2}(295 \mathrm{~K})$	0.7102	$6.71552 \mathrm{E}-4$	0.7296	0.04865	0.02482	0.88512

Figure S9: Duel-site Langmuir-Freundlich fitting (red line) for CO_{2} (black circle) isotherms measured at 273 K (a) and $295 \mathrm{~K}(\mathrm{~b})$ of $\mathbf{1}$.

Figure S10: Duel-site Langmuir-Freundlich fitting (red line) for CH_{4} (black circle) isotherms measured at 273 K (a) and $295 \mathrm{~K}(\mathrm{~b})$ of $\mathbf{1}$.

(a)

(b)

Figure S11: Duel-site Langmuir-Freundlich fitting (red line) for N_{2} (black circle) isotherms measured at $273 \mathrm{~K}(\mathrm{a})$ and $295 \mathrm{~K}(\mathrm{~b})$ of $\mathbf{1}$.

Figure S12: Duel-site Langmuir-Freundlich fittings (red line) for CO_{2} (black circle) isotherms measured at $273 \mathrm{~K}(\mathrm{a})$ and $295 \mathrm{~K}(\mathrm{~b})$ of 2.

Figure S13: Duel-site Langmuir-Freundlich fitting (red line) for CH_{4} (black circle) isotherms measured at 273 K (a) and 295 K (b) of 2.

(a)

(b)

Figure S14: Duel-site Langmuir-Freundlich fitting (red line) for N_{2} (black circle) isotherms measured at 273 K (a) and $295 \mathrm{~K}(\mathrm{~b})$ of 2.

Table S7: Adsorption selectivity of reported MOFs for $\mathrm{CO}_{2} / \mathrm{N}_{2}(15: 85)$ and $\mathrm{CO}_{2} / \mathrm{CH}_{4}(50: 50)$ at 1 bar (a: IAST selectivity; b: selectivity from Henry's Law; c: From slopes of adsorption isotherms at low pressure).

Compound	$\mathrm{CO}_{2} / \mathrm{N}_{2}$ adsorption selectivity	$\mathrm{CO}_{2} / \mathrm{CH}_{4}$ adsorption selectivity	Temperature (K)	Reference
$\mathbf{1}$	$\mathbf{5 1}^{\mathrm{a}}$	$\mathbf{7 . 3}^{\mathrm{a}}$	$\mathbf{2 7 3}$	This work
	$\mathbf{7 5 . 7}^{\text {a }}$	$\mathbf{5}^{\text {a }}$	$\mathbf{2 9 5}$	This work
$\mathbf{2}$	$\mathbf{2 7 . 6}^{\text {a }}$	$\mathbf{4 . 1}^{\text {a }}$	$\mathbf{2 7 3}$	This work
	$\mathbf{1 8 . 4}^{\text {a }}$	$\mathbf{3 . 4}^{\text {a }}$	$\mathbf{2 9 5}$	This work

SIFSIX-2-Cu	$13.7{ }^{\text {a }}$	$5.3{ }^{\text {a }}$	298	6(a)
SIFSIX-1-Cu	$27^{\text {a }}$	$11^{\text {a }}$	298	6(a)
TIFSIX-1-Cu	$30^{\text {a }}$	$11^{\text {a }}$	298	6(b)
SNFSIX-1-Cu	$22^{\text {a }}$	$12^{\text {a }}$	298	6(b)
PCN-88	$18^{\text {a }}$	$5^{\text {a }}$	296	6(c)
PCN-61	$15^{\text {a }}$		298	3(c)
$\mathrm{Cu}_{24}\left(\right.$ TPBTM) ${ }_{8}$	$22^{\text {a }}$		298	3(c)
ZJNU-44a	$15^{\text {a }}$	$5.5^{\text {a }}$	296	6(d)
UTSA-72a	$48.3{ }^{\text {a }}$		273	6(e)
	$35.6^{\text {a }}$		296	
UTSA-85a	$55^{\text {a }}$		273	6(f)
	$62.5{ }^{\text {a }}$		296	
PMOF-3a	$29.2^{\text {a }}$	$8^{\text {a }}$	273	6(g)
	$23.4{ }^{\text {a }}$	$5.1^{\text {a }}$	296	
JUC-141	$21.62^{\text {a }}$	$4.20^{\text {a }}$	273	3(n)
	$27.60^{\text {a }}$	$8.72^{\text {a }}$	298	
Zn-MOF-74		$5^{\text {a }}$	296	6(h)
MOF-177	$3.6{ }^{\text {a }}$		296	6(h)
Cu-BTTri	$21^{\text {a }}$		298	6(i)
en-Cu-BTTri	$25^{\text {a }}$		298	6(i)
NOTT-202a	$26.7^{\text {b }}$	$2.9{ }^{\text {b }}$	273	6(j)
	$4.3{ }^{\text {b }}$	$1.4{ }^{\text {b }}$	293	
ZIF-68	$18.7{ }^{\text {c }}$	$5^{\text {c }}$	298	3(o)
ZIF-69	$19.9{ }^{\text {c }}$	$5.1{ }^{\text {c }}$	298	3(o)
ZIF-70	$17.3^{\text {c }}$	$5.2{ }^{\text {c }}$	298	3(o)
ZIF-79	$23.2^{\text {c }}$	$5.4{ }^{\text {c }}$	298	3(o)
ZIF-81	$23.8{ }^{\text {c }}$	$5.7{ }^{\text {c }}$	298	3(o)
ZIF-95	$18 \pm 1.7^{\text {c }}$	$4.3 \pm 0.4^{\text {c }}$	298	3(o)

References:

1. Bruker, SMART and SAINT (Bruker AXS Inc, Madison, Wisconsin, 2007).
2. Platon Program: A. L. Spek, Acta Crystallogr., Sect. A 1990, 46, 194.
3. (a) D. Lässig, J. Lincke, J. Moellmer, C. Reichenbach, A. Moeller, R. Gläser, G. Kalies, K. A. Cychosz, M. Thommes, R. Staudt and H. Krautscheid, Angew. Chem., Int. Ed., 2011, 50, 1034410348; (b) J.-R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena and H.-C. Zhou, Nat. Commun., 2012, 4, 1538; (c) B. Zheng, J. Bai, J. Duan, L. Wojtas and M. J. Zaworotko, J. Am. Chem. Soc., 2011, 133, 748-751; (d) P.-Q. Liao, H. Chen, D.-D. Zhou, S.-Y. Liu, C.-T. He, Z. Rui, H. Ji, J.-P. Zhang and X.-M. Chen, Energy Environ. Sci., 2015, 8, 1011-1016; (e) T, Panda, P. Pachfule, Y. Chen, J. Jiang and R. Banerjee, Chem. Commun., 2011, 47, 2011-2013; (f) S. D. Burd, S. Ma, J. A. Perman, B. J. Sikora, R. Q. Snurr, P. K. Thallapally, J. Tian, L. Wojtas, M. J. Zaworotko, J. Am. Chem. Soc. 2012, 134, 3663-3666; (g) W. M. Bloch, R. Babarao, M. R. Hill, C. J. Doonan and C. J. Sumby, J. Am. Chem. Soc., 2013, 135, 10441-10448; (h) A. Pal, S. Chand, S. M. Elahi and M. C. Das, Dalton Trans., 2017, 46, 15280-15286; (i) A. Pal, S. Chand and M. C. Das, Inorg. Chem., 2017, 56, 13991-13997; (j) Z. Lu, F. Meng, L. Du, W. Jiang, H. Cao, J. Duan, H. Huang and H. He, Inorg. Chem., 2018, DOI: 10.1021/acs.inorgchem.8b02031; (k) G. Chen, Z. Zhang, S. Xiang and B. Chen, CrystEngComm, 2013, 15, 5232-5235; (1) S. Xiong, Y. Gong, H. Wang, H. Wang, Q. Liu, M. Gu, X. Wang, B. Chen and Z. Wang, Chem. Commun. 2014, 50, 12101-12104; (m) S. Mukherjee, R. Babarao, A. V. Desai, B. Manna and S. K. Ghosh, Cryst. Growth Des., 2017, 17, 3581-3587; (n) N. Zhao, F. Sun, P. Li, X. Mu and G. Zhu, Inorg. Chem., 2017, 56, 6938-6942; (o) A. Phan, C. J. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O'Keeffe and O. M. Yaghi, Acc. Chem. Res., 2010, 43, 58-67.
4. A. L. Myers and J. M. Prausnitz, AIChE J., 1965, 11, 121.
5. B. Li, Y. Zhang, R. Krishna, K. Yao, Y. Han, Z. Wu, D. Ma, Z. Shi, T. Pham, B. Space, J. Liu, P. K.Thallapally, J. Liu, M. Chrzanowski and S. Ma, J. Am. Chem. Soc., 2014, 136, 8654.
6. (a) P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke, K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi and M. J. Zaworotko, Nature, 2013, 495, 80-84; (b) P. Nugent, V. Rhodus, T. Pham, B. Tudor, K. Forrest, L. Wojtas, B. Space and M. Zaworotko, Chem. Commun., 2013, 49, 1606-1608; (c) J. -R. Li, J. Yu, W. Lu, L.-B. Sun, J. Sculley, P. B. Balbuena and H.-C. Zhou, Nat. Commun., 2013, 4, 204-212; (d) C. Song, J. Hu, Y. Ling, Y. L. Feng, R. Krishna, D. Chen and Y. He, J. Mater. Chem. A, 2015, 3, 19417-19426; (e) H. Alawisi,
B. Li, Y. He, H. D. Arman, A. M. Asiri, H. Wang and B. Chen, Cryst. Growth Des., 2014, 14, 2522-2526; (f) O. Alduhaish, H. Wang, B. Li, H. D. Arman, V. Nesterov, K. Alfooty and B. Chen, ChemPlusChem, 2016, 81, 764-769; (g) O. Alduhaish, H. Wang, B. Li, T. -L. Hu, H. D. Arman, K. Alfooty and B. Chen, ChemPlusChem, 2016, 81, 770-774; (h) S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna and B. Chen, Nat. Commun., 2012, 3, 954-963; (i) A. Demessence, D. M. D’Alessandro, M. L. Foo and J. R. Long, J. Am. Chem. Soc., 2009, 131, 8784-8786; (j) S. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia, J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake and M. Schröder, Nat. Mater, 2012, 11, 710-716.
