Supporting information

Polyoxometalate-based metal–organic frameworks NENU-5 hybrid materials for photoluminescence tuning by introducing lanthanide ions and their functionalized soft ionogels / thin film

Bing-Hui Wang,^a and Bing Yan*^{a,b}

^a School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China ^b School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China

* Corresponding author: Email address: byan@tongji.edu.cn (Bing Yan)

Fig. S1 (a) the paddle-wheel Cu₂ unit; (b) the (3, 4)-connected framework of NENU-5. (c) Components of the crystal structures of NENU-5; (d) the structure of POM $[PMo_{12}O_{40}]^{3-}$ in NENU-5. Blue,red, green, purple s pheres represent Cu, O, Mo, P atoms, respectively.

Fig. S2 Powder X-ray diffraction (PXRD) pattern of the synthesized NENU-5 and the simulated.

Fig. S3 XPS pattern of Tb³⁺@NENU-5, Sm³⁺@NENU-5 and Dy³⁺@NENU-5

Figure S4 FTIR spectra analysis of NENU-5 and Ln³⁺@NENU-5 (Ln = Eu, Tb, Sm, Dy, Eu/Tb)

Fig. S5 UV-vis diffuse reflectance spectrum of Eu³⁺@NENU-5, Tb³⁺@NENU-5, Eu³⁺/Tb³⁺@NENU-5.

Fig. S6 Emission spectra of $\rm H_{3}BTC$ (a) , $\rm H_{3}PMo_{12}O_{40}(b)$ and NENU-5(c)

Fig. S7 UV-vis diffuse reflectance spectrum of BTC

Fig. S8 Simple energy schematic diagram Eu³⁺emission sensitized by both POM and ligand.

Figure S9 Excitation spectrum(a) and emission spectrum(b) of Eu³⁺ / Tb³⁺@NENU-5

 $\begin{array}{ll} \mbox{Fig. S10 Decay curves of } Eu^{3+}@NENU-5(a) \ (\lambda_{em}=615nm), \ Tb^{3+}@NENU-5(b) \ (\lambda_{em}=543nm), \ Sm^{3+}@NENU-5(c) \ (\lambda_{em}=598nm)Dy^{3+}@NENU-5(d) \ (\lambda_{em}=574nm), \ Eu^{3+}/Tb^{3+}@NENU-5(\lambda_{em}=615nm)(e), \ Eu^{3+}/Tb^{3+}@NENU-5((\lambda_{em}=543nm))(f). \end{array}$

Fig. S11 Eu^{3+} / Tb³⁺@NENU-5 ionic liquid in room temperature

Fig. S12 Emission spectra of the soft ionogel loaded 1g Eu³⁺ / Tb³⁺@NENU-5(a), the thin film loaded 2.5mg(b) and 7.5mg Eu³⁺@NENU-5 sample.

Fig. S13 IR spectrum of Eu³⁺/Tb³⁺@1 soft ionogel

Fig.S14 SEM image of the Eu³⁺/@NENU-5 thin film.

Fig. S15 Emission spectra of the pure thin film.

Fig. S16 Photoluminescence spectra of Tb³⁺@NENU-5 thin film and the comparation of CIE coordinate

Sample	Eu(ppm)	Tb(ppm)	Sm(ppm)	Dy(ppm)	Cu (ppm)	Ln ³⁺ : La ³⁺ (Molar Ratio)
Eu ³⁺ @1	1.84				17.62	1: 22.7
Tb ³⁺ @1		3.13			34.24	1: 23.4
Sm ³⁺ @1			1.29		15.06	1: 26.2
Dy ³⁺ @1				2.18	21.55	1: 25.3
Eu ³⁺ /Tb ³⁺ @1	1.45	0.63			14.52	1:1: 25.7

Table S1 ICP-MS analysis of Ln³⁺-NENU5(Ln = Eu, Tb, Sm, Dy, Eu/Tb)

Table S2 The peak position and the corresponding transition related to the Ln^{3+} of the Ln^{3+} @NENU-5 materials (Ln = Eu, Tb, Sm, Dy).

Sample	Position(nm)	transition	
	584	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{0}$	
	592	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{1}$	
Eu ³⁺ @NENU-5	615	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{2}$	
	649	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{3}$	
	695	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{4}$	
	489	${}^{5}D_{4} \rightarrow {}^{7}F_{6}$	
	545	${}^{5}D_{4}\rightarrow {}^{7}F_{5}$	
	583	${}^{5}D_{4} \rightarrow {}^{7}F_{4}$	
	621	${}^{5}D_{4} \rightarrow {}^{7}F_{3}$	
	562	${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{5/2}$	
	596	${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{7/2}$	
Sm ³⁺ @NENU-5	642	${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{9/2}$	
	704	${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{11/2}$	
Dy ³⁺ @NENU-5	481	${}^{7}F_{9/2} \rightarrow {}^{6}H_{15/2}$	
	575	$^{7}F_{9/2}\rightarrow^{6}H_{13/2}$	

Excitation wavelength	Х	Y	
255nm	0.3212	0.3289	
260nm	0.3577	0.3366	
265nm	0.3691	0.3381	
270nm	0.3544	0.3322	
275nm	0.3348	0.3214	
280nm	0.332	0.3187	
285nm	0.3333	0.3162	
290nm	0.3365	0.3193	
295nm	0.3241	0.315	
300nm	0.3367	0.3171	

Table S3 CIE chromaticity coordinates of Sm³⁺@NENU-5 in various excitation from 255 to 300nm.

Table S4 Luminescence lifetimes (τ) of Ln³⁺@NENU-5((Ln = Eu, Tb, Sm, Dy, Eu/Tb))

Sample	λ _{ex} (nm)	λ _{em} (nm)	τ(μs)
Eu ³⁺ @ NENU-5	294	615	351.61
Tb ³⁺ @ NENU-5	295	543	637.51
Sm ³⁺ @ NENU-5	296	598	15.63
Dy ³⁺ @ NENU-5	294	574	33.68
Eu ³⁺ /Tb ³⁺ @ NENU-5	295	614	476.25
Eu ³⁺ /Tb ³⁺ @ NENU-5	295	543	278.21